1. Malhotra S, Sharma MM, Lehman ER. Experimental study of the growth of mixing zone in miscible viscous fingering. Physics of Fluids. 2015;27(1):014105. [
Link] [
DOI:10.1063/1.4905581]
2. Peaceman DW, Rachford Jr HH. Numerical calculation of multidimensional miscible displacement. Society of Petroleum Engineers Journal. 1962;2(4):327-339. [
Link] [
DOI:10.2118/471-PA]
3. Vishnudas R, Chaudhuri A. A comprehensive numerical study of immiscible and miscible viscous fingers during chemical enhanced oil recovery. Fuel. 2017;194:480-490. [
Link] [
DOI:10.1016/j.fuel.2017.01.014]
4. Cueto‐Felgueroso L, Juanes R. A phase field model of unsaturated flow. Water Resources Research. 2009;45(10): [
Link] [
DOI:10.1029/2009WR007945]
5. Dicarlo D, Blunt MJ. Determination of finger shape using the dynamic capillary pressure. Water Resources Research. 2000;36(9):2781-2785. [
Link] [
DOI:10.1029/2000WR900184]
6. Mishra M, Martin M, De Wit A. Miscible viscous fingering with linear adsorption on the porous matrix. Physics of Fluids. 2007;19(7):073101. [
Link] [
DOI:10.1063/1.2743610]
7. Riaz A, Pankiewitz C, Meiburg E. Linear stability of radial displacements in porous media: influence of velocity-induced dispersion and concentration-dependent diffusion. Physics of Fluids. 2004;16(10):3592-3598. [
Link] [
DOI:10.1063/1.1775431]
8. Waggoner JR, Castillo JL, Lake LW. Simulation of EOR processes in stochastically generated permeable media. SPE Formation Evaluation. 1992;7(2):173-180. [
Link] [
DOI:10.2118/21237-PA]
9. Zimmerman WB, Homsy GM. Three‐dimensional viscous fingering: A numerical study. Physics of Fluids A: Fluid Dynamics. 1992;4(9):1901-1914. [
Link] [
DOI:10.1063/1.858361]
10. Moissis DE, Miller CA, Wheeler MF. A parametric study of viscous fingering in miscible displacement by numerical simulation. Numerical Simulation in Oil Recovery. 1988;11:227-247. [
Link] [
DOI:10.1007/978-1-4684-6352-1_15]
11. Babchin AJ, Brailovsky I, Gordon P, Sivashinsky G. Fingering instability in immiscible displacement. Physical Review E. 2008;77(2):026301. [
Link] [
DOI:10.1103/PhysRevE.77.026301]
12. Norouzi M, Shoghi MR. A numerical study on miscible viscous fingering instability in anisotropic porous media. Physics of Fluids. 2014;26(8):084102. [
Link] [
DOI:10.1063/1.4891228]
13. Nield DA, Bejan A. Convection in porous media. New York: Springer; 2006. [
Link]
14. Durlofsky L, Brady JF. Analysis of the Brinkman equation as a model for flow in porous media. The Physics of Fluids. 1987;30(11):3329-3341. [
Link] [
DOI:10.1063/1.866465]
15. Kanschat G, Lazarov R, Mao Y. Geometric multigrid for darcy and brinkman models of flows in highly heterogeneous porous media: A numerical study. Journal of Computational and Applied Mathematics. 2017;310:174-185. [
Link] [
DOI:10.1016/j.cam.2016.05.016]
16. Booth R. Miscible flow through porous media [dissertation]. Oxford: University of Oxford; 2008. [
Link]
17. Hill RJ, Koch DL. Moderate-Reynolds-number flow in a wall-bounded porous medium. Journal of Fluid Mechanics. 2002;453:315-344. [
Link] [
DOI:10.1017/S002211200100684X]
18. Joseph DD, Nield DA, Papanicolaou G. Nonlinear equation governing flow in a saturated porous medium. Water Resources Research. 1982;18(4):1049-1052. [
Link] [
DOI:10.1029/WR018i004p01049]
19. Guo P, Weinstein A, Weinbaum S. A hydrodynamic mechanosensory hypothesis for brush border microvilli. American Journal of Physiology-Renal Physiology. 2000;279(4):698-712. [
Link] [
DOI:10.1152/ajprenal.2000.279.4.F698]
20. Feng J, Weinbaum S. Lubrication theory in highly compressible porous media: The mechanics of skiing, from red cells to humans. Journal of Fluid Mechanics. 2000;422:281-317. [
Link] [
DOI:10.1017/S0022112000001725]
21. Tan CT, Homsy GM. Stability of miscible displacements in porous media: Rectilinear flow. The Physics of Fluids. 1986;29(11):3549-3556. [
Link] [
DOI:10.1063/1.865832]
22. De Wit A, Bertho Y, Martin M. Viscous fingering of miscible slices. Physics of Fluids. 2005;17(5):054114. [
Link] [
DOI:10.1063/1.1909188]
23. Homsy GM. Viscous fingering in porous media. Annual Review of Fluid Mechanics. 2003;19(1):271-311. [
Link] [
DOI:10.1146/annurev.fl.19.010187.001415]
24. Pramanik S, Mishra M. Nonlinear simulations of miscible viscous fingering with gradient stresses in porous media. Chemical Engineering Science. 2015;122:523-532. [
Link] [
DOI:10.1016/j.ces.2014.10.019]
25. Goyal N, Meiburg E. Miscible displacements in hele-shaw cells: Two-dimensional base states and their linear stability. Journal of Fluid Mechanics. 2006;558:329-355. [
Link] [
DOI:10.1017/S0022112006009992]
26. Wolf AV. Aqueous solutions and body fluids. New York: Hoeber Medical Division, Harper & Row; 1966. [
Link]
27. Hosseinalipoor SM, Nemati A, Zare Vamerzani B, Saffari H. Experimental study of finger behavior due to miscible viscous and gravity contrast in a porous model. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2019;42(19):2434-2447. [
Link] [
DOI:10.1080/15567036.2019.1607943]
28. Chen Z. Reservoir simulation: Mathematical techniques in oil recovery. Philadelphia: Society for Industrial and Applied Mathematics; 2007. [
Link] [
DOI:10.1137/1.9780898717075]