Volume 20, Issue 6 (June 2020)                   Modares Mechanical Engineering 2020, 20(6): 1543-1554 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zahedi Dizaj Yekan A, Mollaei-Dariani B, Mirnia M. Failure Analysis in Single-Point Incremental Forming of Bilayer Sheet Using the Ductile Fracture Criterion. Modares Mechanical Engineering 2020; 20 (6) :1543-1554
URL: http://mme.modares.ac.ir/article-15-36644-en.html
1- Mechanical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
2- Mechanical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran , dariani@aut.ac.ir
3- Mechanical Engineering Faculty, Babol Noshirvani University of Technology, Babol, Iran
Abstract:   (3951 Views)
Incremental forming of metal sheets is one of the new methods of metal forming with high flexibility in batch production of complex geometries. Due to the absence of a matrix and the gradual applying of forming forces, the forming limit in this process is increased compared to conventional ones. In this research, formability, forming, and finally fracture of aluminum/copper bilayer sheets produced by explosive welding method in the single point incremental forming process are studied. In the numerical prediction of growth and onset of fracture of sheets in this process, the Xue-Wierzbicki damage criterion was used as the VUMAT subroutine in Abaqus software. Using the numerical model, variations of the stress triaxiality and equivalent plastic strain as the variables affecting the damage growth in the incremental forming process were analyzed and explained, and the effect of cyclic and nonlinear loading in this process was shown. Experimental results show a different failure height of various geometries due to different loading conditions. Also, using the verified numerical model, in addition to predicting crack growth location, the fracture height in the formed geometries was predicted by 4.06% difference with respect to the experimental results.
Full-Text [PDF 1104 kb]   (2076 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2019/09/23 | Accepted: 2020/01/16 | Published: 2020/06/20

References
1. Filice L, Fratini L, Micari F. Analysis of material formability in incremental forming. CIRP Annals. 2002;51(1):199-202. [Link] [DOI:10.1016/S0007-8506(07)61499-1]
2. Huang Y, Wang YJ, Cao J, Li M. Prediction of forming limit in single point incremental forming with the ductile fracture criterion. International Manufacturing Science and Engineering Conference. 2007;MSEC2007-31129. [Link] [DOI:10.1115/MSEC2007-31129]
3. Emmens WC, van den Boogaard AH. An overview of stabilizing deformation mechanisms in incremental sheet forming. Journal of Materials Processing Technology. 2009;209(8):3688-3695. [Link] [DOI:10.1016/j.jmatprotec.2008.10.003]
4. Silva MB, Nielsen PS, Bay N, Martins PAF. Failure mechanisms in single-point incremental forming of metals. The International Journal of Advanced Manufacturing Technology. 2011;56:893-903. [Link] [DOI:10.1007/s00170-011-3254-1]
5. Malhotra R, Xue L, Belytschko T, Cao J. Mechanics of fracture in single point incremental forming. Journal of Materials Processing Technology. 2012;212(7):1573-1590. [Link] [DOI:10.1016/j.jmatprotec.2012.02.021]
6. Centeno G, Bagudanch I, Martínez-Donaire AJ, García-Romeu ML, Vallellano C. Critical analysis of necking and fracture limit strains and forming forces in single-point incremental forming. Materials & Design. 2014;63:20-29. [Link] [DOI:10.1016/j.matdes.2014.05.066]
7. Isik K, Silva MB, Tekkaya AE, Martins PAF. Formability limits by fracture in sheet metal forming. Journal of Materials Processing Technology. 2014;214(8):1557-1565. [Link] [DOI:10.1016/j.jmatprotec.2014.02.026]
8. Soeiro JMC, Silva CMA, Silva MB, Martins PAF. Revisiting the formability limits by fracture in sheet metal forming. Journal of Materials Processing Technology. 2015;217:184-192. [Link] [DOI:10.1016/j.jmatprotec.2014.11.009]
9. Fang Y, Lu B, Chen J, Xu DK, Ou H. Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. Journal of Materials Processing Technology. 2014;214(8):1503-1515. [Link] [DOI:10.1016/j.jmatprotec.2014.02.019]
10. Zahedi A, Mollaei-Dariani B, Morovvati MR. Numerical and experimental investigation of single point incremental forming of two layer sheet metals. Modares Mechanical Engineering. 2015;14(14):1-8. Persian. [Link]
11. Al-Ghamdi KA, Hussain G. Threshold tool-radius condition maximizing the formability in SPIF considering a variety of materials: Experimental and FE investigations. International Journal of Machine Tools and Manufacture. 2015;88:82-94. [Link] [DOI:10.1016/j.ijmachtools.2014.09.005]
12. Jin K, Guo X, Tao J, Wang H, Kim N, Gu Y. A model of one-surface cyclic plasticity with Lemaitre damage criterion for plastic instability prediction in the incremental forming process. International Journal of Mechanical Sciences. 2016;114:88-97. [Link] [DOI:10.1016/j.ijmecsci.2016.05.016]
13. Ben Said L, Mars J, Wali M, Dammak F. Numerical prediction of the ductile damage in single point incremental forming process. International Journal of Mechanical Sciences. 2017;131-132:546-558. [Link] [DOI:10.1016/j.ijmecsci.2017.08.026]
14. Mirnia MJ, Shamsari M. Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. Journal of Materials Processing Technology. 2017;244:17-43. [Link] [DOI:10.1016/j.jmatprotec.2017.01.029]
15. Gatea S, Ou H, Lu B, McCartney G. Modelling of ductile fracture in single point incremental forming using a modified GTN model. Engineering Fracture Mechanics. 2017;186:59-79. [Link] [DOI:10.1016/j.engfracmech.2017.09.021]
16. Guzmán CF, Yuan S, Duchêne L, Saavedra Flores EI, Habraken AM. Damage prediction in single point incremental forming using an extended Gurson model. International Journal of Solids and Structures. 2018;151:45-56. [Link] [DOI:10.1016/j.ijsolstr.2017.04.013]
17. Basak S, Kumar Panda S. Failure strains of anisotropic thin sheet metals: Experimental evaluation and theoretical prediction. International Journal of Mechanical Sciences. 2019;151:356-374. [Link] [DOI:10.1016/j.ijmecsci.2018.10.065]
18. Al-Ghamdi KA, Hussain G. On the comparison of formability of roll-bonded steel-Cu composite sheet metal in incremental forming and stamping processes. The International Journal of Advanced Manufacturing Technology. 2016;87:267-278. [Link] [DOI:10.1007/s00170-016-8488-5]
19. Sakhtemanian MR, Honarpisheh M, Amini S. Numerical and experimental study on the layer arrangement in the incremental forming process of explosive-welded low-carbon steel/CP-titanium bimetal sheet. The International Journal of Advanced Manufacturing Technology. 2018;95(9):3781-3796. [Link] [DOI:10.1007/s00170-017-1462-z]
20. Honarpisheh M, Mohammadi Jobedar M, Alinaghian I. Multi-response optimization on single-point incremental forming of hyperbolic shape Al-1050/Cu bimetal using response surface methodology. The International Journal of Advanced Manufacturing Technology. 2018;96:3069-3080. [Link] [DOI:10.1007/s00170-018-1812-5]
21. Gheysarian A, Honarpisheh M. Process parameters optimization of the explosive-welded Al/Cu bimetal in the incremental sheet metal forming process. Iranian Journal of Science Technology, Transactions of Mechanical Engineering. 2019;43:945-956. [Link] [DOI:10.1007/s40997-018-0205-6]
22. Honarpisheh M, Keimasi M, Alinaghian I. Numerical and experimental study on incremental forming process of Al/Cu bimetals: influence of process parameters on the forming force, dimensional accuracy and thickness variations. Journal of Mechanics of Materials and Structures. 2018;13(1):35-51. [Link] [DOI:10.2140/jomms.2018.13.35]
23. Liu Z, Li G. Single point incremental forming of Cu-Al composite sheets: A comprehensive study on deformation behaviors. Archives of Civil and Mechanical Engineering. 2019;19(2):484-502. [Link] [DOI:10.1016/j.acme.2018.11.011]
24. Alinaghian M, Alinaghian I, Honarpisheh M. Residual stress measurement of single point incremental formed Al/Cu bimetal using incremental hole-drilling method. International Journal of Lightweight Materials and Manufacture. 2019;2(2):131-139. [Link] [DOI:10.1016/j.ijlmm.2019.04.003]
25. Sakhtemanian MR, Honarpisheh M, Amini S. A novel material modeling technique in the single-point incremental forming assisted by the ultrasonic vibration of low carbon steel/commercially pure titanium bimetal sheet. The International Journal of Advanced Manufacturing Technology. 2019;102:473-486. [Link] [DOI:10.1007/s00170-018-3148-6]
26. Xue L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. International Journal of Solids and Structures. 2007;44(16):5163-5181. [Link] [DOI:10.1016/j.ijsolstr.2006.12.026]
27. Zahedi A, Mollaei Dariani B, Mirnia MJ. Experimental determination and numerical prediction of necking and fracture forming limit curves of laminated Al/Cu sheets using a damage plasticity model. International Journal of Mechanical Sciences. 2019;153-154:341-358. [Link] [DOI:10.1016/j.ijmecsci.2019.02.002]
28. Mirnia MJ, Vahdani M, Shamsari M. Ductile damage and deformation mechanics in multistage single point incremental forming. International Journal of Mechanical Sciences. 2018;136:396-412. [Link] [DOI:10.1016/j.ijmecsci.2017.12.051]
29. Seong DY, Haque MZ, Kim JB, Stoughton TB, Yoon JW. Suppression of necking in incremental sheet forming. International Journal of Solids and Structures. 2014;51(15-16):2840-2849. [Link] [DOI:10.1016/j.ijsolstr.2014.04.007]
30. Zahedi A, Mollaei-Dariani B, Mirnia M. Experimental determination and numerical prediction of necking and fracture forming limit curves of 2024 aluminum alloy sheet using damage criterion. Modares Mechanical Engineering. 2017;17(9):361-371. Persian. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.