1. Ludwig EE. Applied process design for chemical and petrochemical plants. Houston: Gulf Publishing Company; 1977. [
Link]
2. El-Dessouky HT, Alatiqi IM, Ettouney HM, Al-Deffeeri NS. Performance of wire mesh mist eliminator. Chemical Engineering Processing: Process Intensification. 2000;39(2):129-139. [
Link] [
DOI:10.1016/S0255-2701(99)00033-1]
3. Setekleiv AE, Helsør T, Svendsen HF. Operation and dynamic behavior of wire mesh pads. Chemical Engineering Science. 2012;68(1):624-639. [
Link] [
DOI:10.1016/j.ces.2011.10.027]
4. Janajreh I, Hasania A, Fath H. Numerical simulation of vapor flow and pressure drop across the demister. Energy Conversion Management. 2013;65:793-800. [
Link] [
DOI:10.1016/j.enconman.2012.03.011]
5. Kouhikamali R, Noori Rahim Abadi SMA, Hassani M. Numerical study of performance of wire mesh mist eliminator. Applied Thermal Engineering. 2014;67(1-2):214-222. [
Link] [
DOI:10.1016/j.applthermaleng.2014.02.073]
6. Liu Y, Yu D, Jiang J, Yu X, Yao H, Xu M. Experimental and numerical evaluation of the performance of a novel compound demiste. Desalination. 2017;409:115-127. [
Link] [
DOI:10.1016/j.desal.2017.01.022]
7. Yao Y, Pavlenko AN, Volodin OA. Effects of layers and holes on performance of wire mesh packing. Journal of Engineering Thermophysics. 2015;24(3):222-236. [
Link] [
DOI:10.1134/S1810232815030042]
8. Al-Fulaij H, Cipollina A, Micale G, Ettouney H, Bogle D. Eulerian-lagrangian modeling and computational fluid dynamics simulation of wire mesh demisters in MSF plants. Desalination. 2016;385:148-157. [
Link] [
DOI:10.1016/j.desal.2016.02.019]
9. Hamedi Estakhrsar MH, Rafee R. Effects of wave length and number of bends on the performance of zigzag demisters with drainage channels. Applied Mathematical Modelling. 2016;40(2):685-699. [
Link] [
DOI:10.1016/j.apm.2015.08.023]
10. Zhao J, Jin B, Zhong Z. Study of the separation efficiency of a demister vane with response surface methodology. Journal of Hazardous Material. 2007;147(1-2):363-369. [
Link] [
DOI:10.1016/j.jhazmat.2007.01.046]
11. Narimani E, Shahhoseini S. Optimization of vane mist eliminators. Applied Thermal Engineering. 2011;31(2-3):188-193. [
Link] [
DOI:10.1016/j.applthermaleng.2010.08.031]
12. Venkatesan G, Kulasekharan N, Iniyan S. Numerical analysis of curved vane demisters in estimating water droplet separation efficiency. Desalination. 2014;339:40-53. [
Link] [
DOI:10.1016/j.desal.2014.02.013]
13. Venkatesan G, Kulasekharan N, Muthukumar V, Iniyan S. Regression analysis of a curved vane demister with Taguchi based optimization. Desalination. 2015;370:33-43. [
Link] [
DOI:10.1016/j.desal.2015.05.011]
14. Guan L, Yuan Z, Yang L, Gu Z. Numerical study on the penetration of droplets in a zigzag demister. Environmental Engineering Science. 2016;33(1):35-43. [
Link] [
DOI:10.1089/ees.2014.0367]
15. Koopmana HK, Köksoy C, Ertun Ö, Lienhart H, Hedwig H, Delgado A. An analytical model for droplet separation in vane separators and measurements of grade efficiency and pressure drop. Nuclear Engineering Design. 2014;276:98-106. [
Link] [
DOI:10.1016/j.nucengdes.2014.05.034]
16. Karimi M, Kouhikamali R. Numerical and experimental investigation of the effect of droplet collision regime to surface on the performance of the separation of water droplets from air in a zigzag demister. Modares Mechanical Engineering. 2019;19(3):594-558. [Persian] [
Link]
17. ANSYS. ANSYS FLUENT Theory Guide [Internet]. Canonsburg: ANSYS; 2015 [Unknown Cited]. Available from: Not found [
Link]