Volume 20, Issue 9 (September 2020)                   Modares Mechanical Engineering 2020, 20(9): 2289-2302 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fadaei M, Davari A, Sabetghadam F, Soltani M. Investigation of Single Dielectric Barrier Discharge Plasma Actuator Effect on Separation Control of a Critical Section of Wind Turbine Blade. Modares Mechanical Engineering 2020; 20 (9) :2289-2302
URL: http://mme.modares.ac.ir/article-15-38557-en.html
1- Aerospace Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Aerospace Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran , ardavari@srbiau.ac.ir
3- Aerospace Engineering Faculty, Sharif University of Technology, Tehran, Iran
Abstract:   (1878 Views)
Wind turbines are one of the most important renewable energy production devices and improving their efficiency leads to more effective exploitation of clean energies. Flow separation on wind turbine blade is one of the major reasons of performance loss in wind turbines. The present paper investigates the effect of single dielectric barrier discharge plasma actuator (SDBD) placement on a critical section of wind-electric wind turbine blade (660kW)) designed inside country. An experimental investigation for assuring the validity of the numerical simulations has been performed. Then, two dimensional simulations were extended to evaluate the effect of plasma actuator performance on flow characteristics. Numerical simulations are based on the latest enhanced electrostatic plasma actuator models. The fluid flow is incompressible and the free stream velocity is about 20m/s. The results clearly indicate that frequency and voltage increase can significantly correct the flow pattern in post stall condition. A linear pattern has been achieved between the frequency and aerodynamic coefficients variations. The best improvement for the range under investigation is more than 800% for aerodynamic performance and approximately 50% for separation point delay.
Full-Text [PDF 1651 kb]   (2417 Downloads)    
Article Type: Original Research | Subject: Aerospace Structures
Received: 2019/11/30 | Accepted: 2020/07/2 | Published: 2020/09/20

References
1. Moreau E, Leger L, Touchard G. Effect of a DC surface-corona discharge on a flat plate boundary layer for airflow velocity up to 25 m/s. Journal of Electrostatics. 2006;64(3):215-222. [Link] [DOI:10.1016/j.elstat.2005.05.009]
2. Tathiri G, Esmaeilzadeh E, Mirsajedi SM, Mahdavi Moghaddam H. Experimental investigation of why an AC dielectric barrier discharge plasma actuator is preferred to dc corona wind actuator in boundary layer flow control?. Journal of Applied Fluid Mechanics. 2014;7(3):525-534. [Link] [DOI:10.36884/jafm.7.03.20378]
3. Shadmani S, Mousavi Nainiyan SM, Mirzaei M, Ghasemiasl R, Pouryoussefi SG. Experimental investigation of flow control over an Ahmed body using DBD plasma actuator. Journal of Applied Fluid Mechanics. 2018;11(5):1267-1276. [Link] [DOI:10.29252/jafm.11.05.28600]
4. Zhao ZJ, Cui YD, Li JM, Zheng JG, Khoo BC. On the boundary layer using pulsed nanosecond DBD plasma actuators. Modern Physics Letters B. 2018;32(1213):1-5. [Link] [DOI:10.1142/S0217984918400353]
5. Kinefuchi K, Starikovskiy AY, Miles RB. Numerical investigation of nanosecond pulsed plasma actuators for control of shock-wave/boundary layer separation. Physics of Fluids. 2018;30(10):106105. [Link] [DOI:10.1063/1.5051823]
6. Kurz A, Grundmann S, Tropea C, Forte M, Seraudie A, Vermeersch O, et al. Boundary layer transition control using DBD plasma actuators. Journal of Aerospacelab. 2013;2(6):1-8. [Link]
7. Gupta AD, Roy S. Effect of plasma actuator control parameters on a transitional flow. Journal of Physics D: Applied Physics. 2018;51(13):1-13. [Link] [DOI:10.1088/1361-6463/aab030]
8. Jukes T, Segawa T, Walker S, Furutani H, Iki N, Takekawa S. Active separation control over a NACA0024 by DBD plasma actuator and FBG sensor. Journal of Fluid Science and Technology. 2012;7(1):39-52. [Link] [DOI:10.1299/jfst.7.39]
9. Mazaheri K, Omidi J, Kiani KC. Simulation of DBD plasma actuator effect on aerodynamic performance improvement using a modified phenomenological model. Computers & Fluids. 2016;140:371-384. [Link] [DOI:10.1016/j.compfluid.2016.10.015]
10. Huang X, Zhang X. Plasma actuators for noise control. International Journal of Aeroacoustics. 2010;9(4-5):679-704. [Link] [DOI:10.1260/1475-472X.9.4-5.679]
11. Roth JR. Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma. Physics of Plasmas. 2003;10:2117-2126. [Link] [DOI:10.1063/1.1564823]
12. Enloe CL, McLaughlin TE, VanDyken RD, Kachner KD, Jumper EJ, Corke TC. Mechanisms and responses of a single dielectric barrier plasma actuator: Plasma morphology. AIAA Journal. 2004;42(3):589-594. [Link] [DOI:10.2514/1.2305]
13. Thomas FO, Corke TC, Iqbal M, Kozlov A, Schatzman D. Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA Journal. 2009;47(9):2169-2178. [Link] [DOI:10.2514/1.41588]
14. Durscher R, Roy S. Evaluation of thrust measurement techniques for dielectric barrier discharge actuators. Experiments in Fluids. 2012;53(4):1165-1176. [Link] [DOI:10.1007/s00348-012-1349-6]
15. Benard N, Moreau E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Experiments in Fluids. 2014;55(1846):1-43. [Link] [DOI:10.1007/s00348-014-1846-x]
16. Suzen YB, Huang PG. Numerical simulation of unsteady wake/blade interactions in low-pressure turbine flows using an intermittency transport equation. Journal of Turbomachinery .2005;127(3):431-444. [Link] [DOI:10.1115/1.1860375]
17. Ibrahim IH, Skote M. Boundary condition modifications of the Suzen-Huang plasma actuator model. International Journal of Flow Control. 2011;3(2):111-132. [Link] [DOI:10.1260/1756-8250.3.2-3.111]
18. Abdollahzadeh M, Pascoa JC, Oliveira PJ. Modified split-potential model for modeling the effect of DBD plasma actuators in high altitude flow control. Current Applied Physics. 2014;14(8):1160-1170. [Link] [DOI:10.1016/j.cap.2014.05.016]
19. Ibrahim IH, Skote M. Effects of the scalar parameters in the Suzen Huang model on plasma actuator characteristics. International Journal of Numerical Methods for Heat and Fluid Flow. 2013;23(6):1076-1103. [Link] [DOI:10.1108/HFF-05-2011-0108]
20. Omidi J, Mazaheri K. Improving the performance of a numerical model to simulate the EHD interaction effect induced by dielectric barrier discharge. International Journal of Heat and Fluid Flow. 2017;67:79-94. [Link] [DOI:10.1016/j.ijheatfluidflow.2017.07.008]
21. Abdollahzadeh M, Pascoa J, Oliveira P. Numerical modeling of boundary layer control using dielectric barrier discharge. MEFTE IV Conferencia Nacional em Mecanica de Fluidos, Termodinamica e Energia, Lisbon, Portugal. Unknown Publisher City & Publisher. 2012. [Link]
22. Abdollahzadeh M, Pascoa JC, Oliveira PJ. Comparison of DBD plasma actuators flow control autorithy in different modes of actuation. Aerospace Science and Technology. 2018;78:183-196. [Link] [DOI:10.1016/j.ast.2018.04.013]
23. Ebrahimi A, Hajipour M. Flow separation control over an airfoil using dual excitation of DBD plasma actuators. Aerospace Science and Technology. 2018;79:658-668. [Link] [DOI:10.1016/j.ast.2018.06.019]
24. Ebrahimi A, Hajipour M, Ghamkhar K. Experimental study of stall control over an airfoil with dual excitation of separated shear layer. Aerospace Science and Technology. 2018;82-83:402-411. [Link] [DOI:10.1016/j.ast.2018.09.027]
25. Feng LH, Jukes TN, Choi KS, Wang JJ. Flow control over a NACA 0012 airfoil using dielectric barrier discharge plasma actuator with Gurney flap. Experiments in Fluids. 2012;52(6):1533-1546. [Link] [DOI:10.1007/s00348-012-1263-y]
26. Soltani MR, Bakhshalipour A, Seddighi M. Effect of amplitude and mean angle of attack on the unsteady surface pressure of a pitching airfoil. Journal of Aerospace Science and Technology. 2005;2(4):9-26. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.