Volume 20, Issue 9 (September 2020)                   Modares Mechanical Engineering 2020, 20(9): 2331-2341 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi Soleymani M, Mirzadeh S. Multi-Objective Optimization of Operating Parameters in Tumbling Mill with Neuro-Fuzzy Network. Modares Mechanical Engineering 2020; 20 (9) :2331-2341
URL: http://mme.modares.ac.ir/article-15-42669-en.html
1- Mechanical Engineering Department, Engineering Faculty, Payame Noor University, Bandar Abbas, Iran , mmsoleymani@pnu.ac.ir
2- Mathematics Department, Base Science Faculty, University of Hormozgan, Bandar Abbas, Iran
Abstract:   (1727 Views)
Due to the importance of tumbling mills in processing industries and factories and the lack of an acceptable model for identifying and predicting their performance, it is necessary to optimize these complexes, non-linear, and large systems. This paper aimed to study multi-objective optimization of operating parameters in a tumbling mill. To evaluate the effects of the mill working parameters such as mill speed, ball filling, slurry concentration, and slurry filling on grinding process, power draw, wear of lifters and size distribution of the mill product, it was tried to manufacture a pilot model with a smaller size than the actual mill. For this aim, a mill with 1×0.5m was implemented. The feed of the mill is copper ore with a size smaller than 1 inch. The experiments were done at 65 to 85% of the critical speed. In addition, the combination of the balls was used as grinding media with 10 to 30% of the total volume of the mill. Slurry concentration is 40 to 80% (the weight fraction of solid in slurry) and the slurry filling is between 0.5 and 2.5. In this paper, Adaptive Neuro-Fuzzy Inference System (ANFIS) based multi-objective optimization (NSGA-II) of tumbling mill is done. Level diagrams are used to select the best solution from the Pareto front. The results showed that the best grinding occurs at 70-80% of the critical speed and ball filling of 15-20%. Optimized grinding was observed when the slurry volume is 1-1.5 times of the ball bed voidage volume and the slurry concentration is between 60 and 70%.
Full-Text [PDF 1289 kb]   (2272 Downloads)    
Article Type: Original Research | Subject: Process design
Received: 2020/05/6 | Accepted: 2020/07/15 | Published: 2020/09/20

References
1. Wills BA, Finch J. Wills' mineral processing technology: An introduction to the practical aspects of ore treatment and mineral recovery. Oxford: Butterworth-Heinemann; 2015. [Link] [DOI:10.1016/B978-0-08-097053-0.00001-7]
2. King RP. Modeling and simulation of mineral processing systems. Amsterdam: Elsevier; 2001. [Link] [DOI:10.1016/B978-0-08-051184-9.50014-6]
3. Zadeh LA. Fuzzy sets. Information and Control. 1965;8(3):338-353. [Link] [DOI:10.1016/S0019-9958(65)90241-X]
4. Mohammadi Soleymani M, Fooladi Mahani M, Rezaeizadeh M, Bahiraie M. Experimental study of mill speed, charge filling, slurry concentration, and slurry filling on the wear of lifters in tumbling mills. Modares Mechanical Engineering. 2015;15(4):265-271. [Persian] [Link]
5. Mohammadi Soleymani M, Fooladi Mahani M, Rezaeizadeh M. Experimental investigation of the power draw of tumbling mills in wet grinding. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2016;230(15):2709-2719. [Link] [DOI:10.1177/0954406215598801]
6. Moys MH. Grinding to nano-sizes: Effect of media size and slurry viscosity. Minerals Engineering. 2015;74:64-67. [Link] [DOI:10.1016/j.mineng.2014.11.018]
7. Soleymani MM, Fooladi M, Rezaeizadeh M. Effect of slurry pool formation on the load orientation, power draw, and impact force in tumbling mills. Powder Technology. 2016;287:160-168. [Link] [DOI:10.1016/j.powtec.2015.10.009]
8. Hoseinian FS, Shirani Faradonbeh R, Abdollahzadeh A, Rezaei B, Soltani-Mohammadi S. Semi-autogenous mill power model development using gene expression programming. Powder Technology. 2017;308:61-69. [Link] [DOI:10.1016/j.powtec.2016.11.045]
9. Hadizadeh M, Farzanegan A, Noaparast M. A plant-scale validated MATLAB-based fuzzy expert system to control SAG mill circuits. Journal of Process Control. 2018;70:1-11. [Link] [DOI:10.1016/j.jprocont.2018.08.003]
10. Hadizadeh M, Farzanegan A, Noaparast M. Supervisory fuzzy expert controller for sag mill grinding circuits: Sungun copper concentrator. Mineral Processing and Extractive Metallurgy Review. 2017;38(3):168-179. [Link] [DOI:10.1080/08827508.2017.1281133]
11. Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge: MIT press; 1992. [Link] [DOI:10.7551/mitpress/1090.001.0001]
12. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002;6(2):182-197. [Link] [DOI:10.1109/4235.996017]
13. Deb K. Multi-objective optimization. In: Burke EK, Kendall G. Search methodologies. Boston: Springer; 2014. [Link] [DOI:10.1007/978-1-4614-6940-7_15]
14. Karimi M, Bakhtiari H, Keshavarz A. Modeling and multiobjective optimization of twist extrusion process. Modares Mechanical Engineering. 2013;13(6):60-73. [Persian] [Link]
15. Jang JSR. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics. 1993;23(3):665-685. [Link] [DOI:10.1109/21.256541]
16. Rezaeizadeh M, Fooladi M, Powell MS, Mansouri SH, Weerasekara NS. A new predictive model of lifter bar wear in mills. Minerals Engineering. 2010;23(15):1174-1181. [Link] [DOI:10.1016/j.mineng.2010.07.016]
17. Tavares LM. Breakage of single particles: Quasi-static. Handbook of Powder Technology. 2007;12:3-68. [Link] [DOI:10.1016/S0167-3785(07)12004-2]
18. Arora JS. Introduction to optimum design. Cambridge: Academic Press; 2004. [Link] [DOI:10.1016/B978-012064155-0/50012-4]
19. Mulenga FK, Moys MH. Effects of slurry pool volume on milling efficiency. Powder Technology. 2014;256:428-435. [Link] [DOI:10.1016/j.powtec.2014.02.013]
20. Kasprzak EM, Lewis K. Pareto analysis in multiobjective optimization using the collinearity theorem and scaling method. Structural and Multidisciplinary Optimization. 2001;22(3):208-218. [Link] [DOI:10.1007/s001580100138]
21. Blasco X, Herrero JM, Sanchis J, Martínez M. A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences. 2008;178(20):3908-3924. [Link] [DOI:10.1016/j.ins.2008.06.010]
22. Konak A, Coit DW, Smith AE. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety. 2006;91(9):992-1007. [Link] [DOI:10.1016/j.ress.2005.11.018]
23. Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation. 2000;8(2):173-195. [Link] [DOI:10.1162/106365600568202]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.