Volume 20, Issue 9 (September 2020)                   Modares Mechanical Engineering 2020, 20(9): 2343-2354 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi M, Rezaei Ashtiani H. Experimental and Numerical Investigation of Isothermal Hot Forging of a Complex Industrial Part of AA6061 Aluminum Alloy. Modares Mechanical Engineering 2020; 20 (9) :2343-2354
URL: http://mme.modares.ac.ir/article-15-43270-en.html
1- Solid Mechanics Department, Mechanical Engineering Faculty, Arak University of Technology, Arak, Iran
2- Solid Mechanics Department, Mechanical Engineering Faculty, Arak University of Technology, Arak, Iran , hr_rezaei@arakut.ac.ir
Abstract:   (1878 Views)
The isothermal forging process has the ability to produce complex industrial parts from alloys that do not have high formability, such as aluminum alloys. Eliminating the temperature difference between the part and the die in this method eliminates the problem of cooling the part due to heat transfer to the die. In this study, the hot isothermal forging of AA6061 aluminum alloy in different conditions of process including lubricant type, dimensions and size of primary ingot, temperature and rate of deformation, to produce a complex industrial part numerically and experimentally was investigated. Deform 3D software was used to simulate this process. Comparison of experimental and numerical results showed a good agreement of results. The best dimension of the primary ingot for the studied piece is cylindrical with an initial diameter of 35mm and an initial height of 32mm. Increasing the temperature, reducing the deformation rate and using the appropriate lubricant reduced the amount of required forging force. Reducing the deformation rate from 25-2.5mm/s reduced the required forging force to 1.8 times. Increasing the forging temperature from 380 to 530℃ reduced the amount of forging force about 3.5 times and reducing the hardness of the part about 20%. The results showed that due to the complexity of the forging part, different areas of the part were affected by different strain values, which changes the percentage of secondary phases such as Mg2Si phase in these areas.
Full-Text [PDF 1401 kb]   (2059 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2020/05/30 | Accepted: 2020/07/19 | Published: 2020/09/20

References
1. Yang James F. Material & processes. Cleveland: ASM; 1998. [Link]
2. Davis Joseph R. Forming & forging. Cleveland: ASM; 1998. [Link]
3. Lyman T. Forging & casting. Cleveland: ASM;1970. [Link]
4. Anderson K. Aluminum forging design manual. Arlington County: Aluminum Association; 1967. [Link]
5. Altan T, Ngaile G, Shen G. Cold and hot forging: Fundamentals and applications. Cleveland: ASM International; 2005. [Link] [DOI:10.31399/asm.tb.chffa.9781627083003]
6. Gunasekera JS. CAD/CAM of dies. International Journal of Production Research. 1990;28(1):218-219. [Link] [DOI:10.1080/00207549008942701]
7. Sheridan SA. Forging design Handbook. Cleveland: American Society for Metals; 1972. [Link]
8. Hüseyđn O. Analysis and design for aluminum forging process. Ankara: Middle East Technical University; 2008. [Link]
9. Zhang Y, Shan D, Xu F. Flow lines control of disk structure with complex shape in isothermal precision forging. Journal of Materials Processing Technology. 2008;209(2):745-753. [Link] [DOI:10.1016/j.jmatprotec.2008.02.058]
10. Fuertes JP, Luis CJ, Luri R, Salcedo D, Leon J, Puertas I. Design, simulation and manufacturing of a connecting rod from ultra-fine grained material and isothermal forging. Journal of Manufacturing Processes. 2015;21:56-68. [Link] [DOI:10.1016/j.jmapro.2015.11.005]
11. Kim H, Altan T. Effects of surface finish and die temperature on friction and lubrication in forging. Procedia Engineering. 2014;81:1848-1853. [Link] [DOI:10.1016/j.proeng.2014.10.244]
12. Prabhu TR. Microstructure and mechanical properties of a thixoforged (semi solid state forged) Al-Cu-Mg alloy. Archives of Civil and Mechanical Engineering. 2016;16(3):335-343. [Link] [DOI:10.1016/j.acme.2016.01.003]
13. Salcedoa D, Luisa CJ, Luri R, Leon J, Puertas I, Fuertes JP. Design and optimization of the dies for the isothermal forging of a cam. Procedia Engineering. 2015;132;1069-1076. [Link] [DOI:10.1016/j.proeng.2015.12.597]
14. Alimi A, Fajoui J, Kchaou M, Branchu S, Elleuch R, Jacquemin F. Multi-scale hot working tool damage (X40crmov5-1) analysis in relation to the forging process. Engineering Failure Analysis. 2015;62:142-155. [Link] [DOI:10.1016/j.engfailanal.2015.11.031]
15. Zhang W, Liu Y, Wang L, Liu B. Numerical simulation and physical analysis for dynamic behaviors of P/M tial alloy in hot-packed forging process. Transactions of Nonferrous Metals Society Of China. 2012;22(4):901-906. [Link] [DOI:10.1016/S1003-6326(11)61263-6]
16. Ajeet Babua PK, Saraf MR, Vora KC, Chaurasiya SM, Kuppan P. Influence of forging parameters on the mechanical behavior and hot forgeability of Aluminium alloy. Materials Today Proceedings. 2015;2(4-5):3238-3244. [Link] [DOI:10.1016/j.matpr.2015.07.132]
17. Tang B, Cheng L, Kou H, Li J. Hot forging design and microstructure evolution of a high Nb containing tial alloy. Intermetallics. 2014;58:7-14. [Link] [DOI:10.1016/j.intermet.2014.11.002]
18. Si JY, Han PB, Zhang J. Design for isothermal forging of Ti-46.5a1-2.5v-L.Ocr-O.3ni alloy. Journal of Iron and Steel Research International. 2010;17:67-73. [Link] [DOI:10.1016/S1006-706X(10)60131-8]
19. Lu XJ, Zou W, Huang MH, Deng K. A process/shape-decomposition modeling method for deformation force estimation in complex forging processes. International Journal of Mechanical Sciences. 2015;90:190-199. [Link] [DOI:10.1016/j.ijmecsci.2014.11.013]
20. Hui W, Zhang Y, Shao C, Chen S, Zhao X, Dong H. Effect of cooling rate and Vanadium content on the microstructure and hardness of medium Carbon forging steel. Journal of Material Science & Technology. 2016;32(6):545-551. [Link] [DOI:10.1016/j.jmst.2016.01.006]
21. Saeedi R, Sadeghi MH, Rezaee A. Design and optimization of Al2024 siemens generator fan blade forging process. Modares Mechanical Engineering. 2013;13(8):108-122. [Persian] [Link]
22. Akbaripanah F, Moradi Y. Super plasticity behavior of mdfed Sn-1Bi alloy determined by shear punch test. Malayer Mechanical Engineering. 2016;46(4):27-32. [Persian] [Link]
23. Petrov P, Perfilov V, Stebunov S. Prevention of lap formation in near net shape isothermal forging technology of part of irregular shape made of AL alloy A92618. Journal of Materials Processing Technology. 2006;177(1-3):218-223. [Link] [DOI:10.1016/j.jmatprotec.2006.03.206]
24. Rao KP, Prasad YVRK, Suresh K. Materials modeling and simulation of isothermal forging of rolled AZ31B magnesium alloy anisotropy of flow. Material and Design. 2011;32(5):2545-2553 . [Link] [DOI:10.1016/j.matdes.2011.01.050]
25. Wu B, Li MQ, Ma DW. The flow behavior and constitutive equations in isothermal compression of 7050 Aluminum alloy. Materials Science and Engineering: A. 2012;542:79-87. [Link] [DOI:10.1016/j.msea.2012.02.035]
26. Zhang J, Huang H, Yang C. Effects of hot ring forging on microstructure texture and mechanical properties of AZ31 magnesium alloy. Materials Science and Engineering: A. 2017;679:20-27. [Link] [DOI:10.1016/j.msea.2016.10.024]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.