Metal/composite hybrid structures, which are a combination of low-density composites with low-cost metallic materials, have significant potential to provide cost-effective energy absorption devices for a variety of applications. In this research, an experimental study was performed in order to investigate the effect of overlapping composite layers on energy absorption and crashworthiness characteristics of aluminum/epoxy hybrid tube reinforced with glass fibers under quasi-static load. Also, another experimental study is conducted to determine the crash performance of aluminum/composite hybrid tube under static axial crush force. The result is that Hybrid tubes consist of epoxy reinforced with E-glass fiberglass tape overlaps around aluminum tubes with different percentages of overlapping. Quasi-static crash tests are done on aluminum cylindrical and aluminum/composite hybrid cylindrical tubes with 5%, 50%, and 100% overlap and the amount of energy absorption, specific energy absorption, peak crushing force, mean crushing force, crush load efficiency and the percentage of their changes were obtained and compared. Finally, to validate the results in this research, the results of the performed tests were compared with the results of other references and literature in this context. |