Volume 22, Issue 3 (March 2022)                   Modares Mechanical Engineering 2022, 22(3): 167-177 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Lhiabani A, Nasri M, Shajari Y, Seyedraoufi Z. Effect of compressive residual stress on wear resistance of IGT25+ gas turbine compressor blades made of 1.4923 steel. Modares Mechanical Engineering 2022; 22 (3) :167-177
URL: http://mme.modares.ac.ir/article-15-50913-en.html
1- Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran.
2- Imam Khomeini University
3- Materials and Energy Research Center
4- Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran , z.seyedraoufi@kiau.ac.ir
Abstract:   (1807 Views)
1.4923 stainless steel is one of the options for producing Iranian gas turbine (IGT25) compressor blades and upgrading IGT25 +., as well as the importance of wear resistance in turbine parts and the small number of studies in the field of wear as a destructive mechanism of turbine parts, in this research the effect of residual stress caused by shot peening on the wear resistance of steel 1.4923 was investigated. To create the compressive residual stress, shot peening operations were used at 5, 10, 15 and 20 minutes. Microstructural studies by optical microscopy (OM) and scanning electron microscopy (SEM) showed that with increasing shot peening time, the thickness of the plastic deformation area increases so that the plastic deformation area can be divided into three plastic deformation areas. Severe, ordinary plastic deformation and the area affected by plastic deformation. Calculations on the results of X-ray diffraction (XRD) showed that with increasing shot peening time, the amount of compressive residual stress increases to 694 MPa. With increasing compressive residual stress on the surface, the wear resistance of the samples increased up to 90% due to the increase in the density of dislocations and grain refining.  Also, the investigation of worn surfaces by SEM showed that the wear mechanism in the samples is oxide adhesive wear and increasing the residual stress of the samples causes the transfer of the wear regime to mild wear abrasion with the appearance of crater areas.
Full-Text [PDF 1830 kb]   (993 Downloads)    
Article Type: Original Research | Subject: Analysis & Selection of Materials
Received: 2021/03/13 | Accepted: 2021/07/7 | Published: 2022/01/30

References
1. Nowell D, Duo P, Stewar I. F. Prediction of fatigue performance in gas turbine blades after. International Journal of Fatigue. 2003, 963-969. [DOI:10.1016/S0142-1123(03)00160-9]
2. Bagheri S, alii, Guagliano M. Effects of surfaces nanocrystallization induced by shot peening on material properties: a Review. Frattura ed Integrità Strutturale. 2009, vol. 7, 3-16. https://doi.org/10.3221/IGF-ESIS.07.01 [DOI:10.3221/IGF-ESIS.07.013.]
3. Ma X, Langelier B, Gault B, Subramanian S. Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening. Metallurgical and Materials Transactions A. 2017, Vol. 48, 2460-2471. [DOI:10.1007/s11661-017-4036-7]
4. Deng X. T, Cheng M, Zhang S. H, Song H. W, Taha M. Residual stresses and martensite transformation in AISI 304 austenitic stainless steel. Materials Research Express. 2018, 2053-1591. [DOI:10.1088/2053-1591/aae292]
5. Tlili S, Beliardouh N.E, Ramoul C.E, Bahi R, Abdullah O.I, Kaleli H, Samad M.A. Thermal Treatment Effect on Tribological and Corrosion Performances of 13Cr5Ni2Mo Super-Martensitic Stainless Steel. Tribology in Industry. 2018, vol. 40, 433-439. [DOI:10.24874/ti.2018.40.03.09]
6. Tianjian W, Yubing P, Zhenhuan G, Hua F, Gongxian Y. Stress Corrosion Behavior of 12Cr Martensite Steel for Steam Turbine LP Blade. The Minerals, Metals & Materials Society. 2014, pp 327-332. [DOI:10.1002/9781119027973.ch37]
7. ASM metals handbook volume 5, surface engineering,1994.
8. Wu Q, Xie D.J, Jia Z.M, Zhang Y.D, Zhang H.Z. Effect of shot peening on surface residual stress distribution of SiCp/2024Al. Composites Part B: Engineering.2018, 382-387. ttps://doi.org/10.1016/j.compositesb.2018.09.021 [DOI:10.1016/j.compositesb.2018.09.021]
9. Iadicola M. A, Gnäupel-Herold T. H. Effective X-ray elastic constant measurement for in situ stress measurement of biaxially strained AA5754-O. Materials Science and Engineering: A. 2012, Vol. 545, 168-175. [DOI:10.1016/j.msea.2012.02.100]
10. Lee S, Kim S, wang BH, Lee B.S, Lee C.G. Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel. Acta Materialia. 2002, vol.50, 4755-4762. [DOI:10.1016/S1359-6454(02)00313-0]
11. Y Sun. Sliding Wear Behaviour of Surface Mechanical Attrition Treated AISI 304 Stainless Steel. Tribology International. 2013, Vol. 57, 67-75. http://dx.doi.org/10.1016/j.triboint.2012.07.015 [DOI:10.1016/j.triboint.2012.07.015]
12. Liu Y, Ye D, Yong Q, Su J, Zhao K, Jiang W. Effect of Heat Treatment on Microstructure and Property of Cr13 Super Martensitic Stainless Steel. Journal of Iron and Steel Research International. vol. 2011, 18, 60-66. [DOI:10.1016/S1006-706X(11)60118-0]
13. Pfenning A, Kranzmann A. Potential of Martensitic Stainless Steel X5CrNiCuNb 4-16as Pipe Steel in Corrosive CCS Environment. International Journal of Environmental Science and Development. 2017, vol. 8, no. 7, pp. 466-473. [DOI:10.18178/ijesd.2017.8.7.998]
14. Ma X, Langelier B, Gault B, Subramanian S. Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening. Metallurgical and Materials Transactions A. 2017, Vol. 48, 2460-2471. [DOI:10.1007/s11661-017-4036-7]
15. Huang S, Zhu Y, Gui W, Peng P, Qiao H, Diao X. Chu P, Effects of laser shock processing on fatigue crack growth in Ti-17 titanium alloy. Journal of Materials Engineering and Performance. 2017, vol. 25, no. 2, pp. 813-821. [DOI:10.1007/s11665-017-2507-z]
16. Singh V, Marya M. Surface modification of oilfield alloys by ultrasonic impact peening: UNS N07718, N07716, G41400 and S17400. Journal of Materials Engineering and Performance. 2016, vol. 25, no. 1, pp. 338-347. [DOI:10.1007/s11665-015-1829-y]
17. Kim S. J, Hyun K. Y, Jang S. K. Effects of water cavitation peening on electrochemical characteristic by using micro-droplet cell of Al-Mg alloy. Current Applied Physics. 2012, vol. 12, pp. S24-S30. [DOI:10.1016/j.cap.2012.02.013]
18. Trsko L, Guagliano M, Bokuvka O, Novy F, Jambor M, Florkova Z. Influence of severe shot peening on the surface state and ultra-high-cycle fatigue behavior of an AW 7075 aluminum alloy. Journal of Materials Engineering and Per formance. 2017, vol. 26, pp 2784-2797. [DOI:10.1007/s11665-017-2692-9]
19. Zabeen S, Preuss M, Withers P.J. Evolution of a Laser Shock Peened Residual Stress Field Locally with Foreign Object Damage and Subsequent Fatigue Crack Growth. Acta Mater. 2015, Vol.83, pp 216-226. [DOI:10.1016/j.actamat.2014.09.032]
20. Pretorius J, Desai D, Snedden G. Effect of Laser Shock Peening on Fatigue Life at Stress Raiser Regions of a High-Speed Micro Gas Turbine Shaft: A Simulation Based Study. International Journal of Engineering Research in Africa. 2019, Vol. https://doi.org/10.4028/www.scientific.net/JERA.45.15 [DOI:45, 15-27. 10.4028/www.scientific.net/JERA.45.15.]
21. Vaxevanidis N.M, Manolakos D.E, Koutsomichalis A, Petropoulos G, Panagotas A, Sideris A, Mourlas A, Antoniou S.S, THE EFFECT OF SHOT PEENING ON SURFACE INTEGRITY AND TRIBOLOGICAL BEHAVIOUR OF TOOL STEELS, International Conference on Tribology . 2006, Parma, Italy.
22. Xuesong F, Niu Z, Deng Y, Zhang J, Liu C, Chen G, Li Z, Zhou W. Accuracy of X-ray diffraction measurement of residual stresses in shot peened titanium alloy samples. Nondestructive Testing and Evaluation. 2019, vol. 34, 164-177. [DOI:10.1080/10589759.2019.1573239]
23. Prevey P. X-ray Diffraction Residual Stress Techniques. Metals Handbook, Metals Park: American Society for Metals, 1986, 380-392. [DOI:10.31399/asm.hb.v10.a0001761]
24. Ahmed I.I, Adebisi J.A, Abdulkareem S, Sherry A.H, Investigation of surface residual stress profile on martensitic stainless steel weldment with X-ray diffraction. Journal of King Saud University - Engineering Sciences. 2016, vol. 30, 183-187. [DOI:10.1016/j.jksues.2016.01.004]
25. Gadalinska E, Malicki M. X-RAY Stress measurement in the institute of aviation possibilities and examples . Journal of KONES Powertrain and ransport. 2018, Vol. 25, 1231-4005. [DOI:10.5604/01.3001.0012.4327]
26. Yang R, Zhang X, Mallipeddi D, Angelou N, Toftegaard H.L, Li Y, Ahlström J, Lorentzen L, Wu G, Huang X. Effect of shot peening on the residual stress and mechanical behaviour of low temperature and high-temperature annealed martensitic gear steel 18CrNiMo7-6. Series: Materials Science and Engineering. 2017, Vol. 219, 012046. [DOI:10.1088/1757-899X/219/1/012046]
27. Segurado E, Belzunce F. J, Fernández I. Effects of low intensity shot peening treatments applied with different types of shots on the fatigue performance of a high-strength steel. Surface and Coatings Technology. 2018, Vol. 340, 25-35. [DOI:10.1016/j.surfcoat.2018.02.033]
28. Hirsch T.K, DA S. ROCHA A, Ramos F, Strohaecker T. Residual Stress-Affected Diffusion during Plasma Nitriding of Tool Steels. Metallurgical and Materials Transactions A. 2004. VO. 35A, 3523-3530. [DOI:10.1007/s11661-004-0189-2]
29. Wang C, Lai Y, Wang L, Wang C. Dislocation-based study on the influences of shot peening on fatigue resistance. Surface and Coatings Technology. 2020, Vol. 383, 125247. [DOI:10.1016/j.surfcoat.2019.125247]
30. Al-Obaid Y. F. The effect of shot peening on stress corrosion cracking behaviour of 2205-duplex stainless steel. Engineering Fracture Mechanics. 1995, Vol.51, 19-25. [DOI:10.1016/0013-7944(94)00213-2]
31. Messe O.M.D.M, Stekovic S, Hardy M.C, RAE C.M.F. Characterization of Plastic Deformation Induced by Shot-Peening in a Ni-Base Superalloy. the journal of the Minerals, Metals & Materials Society. 2014, Vol. 66, 2502-2515. [DOI:10.1007/s11837-014-1184-8]
32. Lee H, Kim D, Jung J, Pyoun Y, Shin K. Influence of peening on the corrosion properties of AISI 304 stainless steel. Corrosion scince,. 2009, vol. 51, 2826-2830. [DOI:10.1016/j.corsci.2009.08.008]
33. Lerma B.G, Shehadeh M.A, Balint D.S, Dini, D, Chen L, Eakins D.E. The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron. International Journal of Plasticity. 2017,vol. 96, 135-155. [DOI:10.1016/j.ijplas.2017.05.001]
34. Lin Q, Liu H, Zhu C, Chen D, Zhou S. Effects of different shot peening parameters on residual stress, surface roughness and cell size. Surface and Coatings Technology. 2020, Vol. 398, 126054. [DOI:10.1016/j.surfcoat.2020.126054]
35. Cullity B.D, Stock S.R. Elements of X-Ray Diffraction. Third Edition, Prentice-Hall Inc., New Jersey, 2001 , 388-389.
36. Ungár T. Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia. 2004, vol. 51, 777-781. [DOI:10.1016/j.scriptamat.2004.05.007]
37. Wang T, Yu J, Dong B. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel. Surface and Coatings Technology. 2006, vol. 200, 4777-4781. [DOI:10.1016/j.surfcoat.2005.04.046]
38. Kumar R.K, SampathKumaranb P, Seetharamuc ., Anand Kumard S, Pramode T. Investigation of Shot Peening Effect on Titanium Alloy Affecting Surface Residual Stress and Roughness for Aerospace Applications. Procedia Structural Integrity. 2019,Vol. 14, 134-141. [DOI:10.1016/j.prostr.2019.05.018]
39. Lv Y, Lei L.Q, Sun L.N. Influence of different combined severe shot peening and laser surface melting treatments on the fatigue performance of 20CrMnTi steel gear. Materials Science and Engineering A. 2016, vol. 658, 77-85. [DOI:10.1016/j.msea.2016.01.050]
40. An X.H, Lin Q.Y, Wu S.D, Zhang Z.F. Improved fatigue strengths of nanocrystalline Cu and Cu-Al alloys. Materials Research Letters. 2015, vol. 3, 135-141. [DOI:10.1080/21663831.2015.1029645]
41. Moshkovich A, Perfilyev V, Rapoport L. Effect of Plastic Deformation and Damage Development during Friction of fcc Metals in the Conditions of Boundary Lubrication.Lubricants . 2019, vol.7, 45. [DOI:10.3390/lubricants7050045]
42. Marques I.J, Silva F.J.d, França T, Sousa G, Francisca da Conceição Hermenegildo T, Abreu Santos T. Evaluation of Abrasive Wear in UNS S32101 and S32750 Duplex Stainless Steels Submitted to Friction Stir Processing. Materials Research. 2020, vol. 22, 1516-1439. [DOI:10.1590/1980-5373-mr-2018-0877]
43. Cai C, Song R, Liu S, Feng Y, Pei Z. Wear behavior and subsurface layer work hardening mechanism of Fe-24.1Mn-1.21C-0.48Si steel. Procedia Engineering. 2017, vol. 207, 2251-2256. [DOI:10.1016/j.proeng.2017.10.990]
44. Maleki E, Unal O. Optimization of Shot Peening Effective Parameters on Surface Hardness Improvement. Metals and Materials International, 2020. [DOI:10.1007/s12540-020-00758-x]
45. Maleki E, Unal, O, Kashyzadeh K.R. Efficiency Analysis of Shot Peening Parameters on Variations of Hardness, Grain Size and Residual Stress via Taguchi Approach. Metals and Materials International. 2019, vol. 25, 1436-1447. [DOI:10.1007/s12540-019-00290-7]
46. Pape F, Coors, T, Poll G. Comparing the Influence of Residual Stresses in Bearing Fatigue Life at Line and Point Contact. Materials Research Proceedings. 2018, vol. 6, 215-220. [DOI:10.15488/4928]
47. Tomaz Í.d.V, Martins M.C, Meneses Costa H.R, Napoleão Bastos I, Fonseca M.C. Influence of residual stress on the sliding wear of AISI 4340 steel˝, revista Matéria, 2020, vol.25, 1517-7076 . [DOI:10.1590/s1517-707620200002.1018]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.