دوره 22، شماره 3 - ( اسفند 1400 )                   جلد 22 شماره 3 صفحات 177-167 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Lhiabani A, Nasri M, Shajari Y, Seyedraoufi Z. Effect of compressive residual stress on wear resistance of IGT25+ gas turbine compressor blades made of 1.4923 steel. Modares Mechanical Engineering 2022; 22 (3) :167-177
URL: http://mme.modares.ac.ir/article-15-50913-fa.html
خیابانی آرش، نصری مهدی، شجری یزدن، سیدرئوفی زهراسادات. اثر تنش پسماند فشاری بر مقاومت به سایش پره‌های کمپرسور توربین گاز IGT25+ از جنس فولاد 1.4923. مهندسی مکانیک مدرس. 1400; 22 (3) :167-177

URL: http://mme.modares.ac.ir/article-15-50913-fa.html


1- دانشگاه آزاد اسلامی واحد کرج
2- دانشگاه بین المللی امام خمینی قزوین
3- پژوهشگاه مواد و انرژی
4- دانشگاه آزاد اسلامی واحد کرج ، z.seyedraoufi@kiau.ac.ir
چکیده:   (1806 مشاهده)
فولاد ضد زنگ 1.4923 یکی از گزینه­های ساخت پره­های کمپرسور توربین گاز ایرانی و درحال ارتقاء IGT25+ است. از آنجا که سایش در قطعات توربینی یک مکانیزم مخرب بوده و در سایه دیگر مکانیزم­های آسیب زا قرار می­گیرد و مقالات بسیار کمی در این حوزه موجود است، در این تحقیق نقش تنش پسماند ناشی از ساچمه کوبی بر مقاومت در برابر سایش فولاد 1.4923 بررسی شد. برای ایجاد تنش پسماند فشاری از عملیات ساچمه کوبی در زمان­های 5، 10، 15 و 20 دقیقه استفاده شد. بررسی­های ریزساختاری به وسیله میکروسکوپ­های نوری (OM) و الکترونی روبشی (SEM) نشان دادند که با افزایش زمان ساچمه­کوبی، ضخامت ناحیه تغییر فرم پلاستیک افزایش می­یابد؛ طوری که ناحیه تغییر فرم پلاستیک را می­توان به سه ناحیه تغییر فرم پلاستیک شدید، تغییر فرم پلاستیک معمولی و ناحیه متاثر از تغییر فرم پلاستیک تقسیم بندی نمود. محاسبات روی نتایج تفرق پرتو ایکس (XRD) نشان داد که با افزایش زمان ساچمه کوبی، میزان تنش پسماند فشاری تا 694 مگاپاسکال افزایش می­یابد. با افزایش تنش پسماند فشاری در سطح نیز، مقاومت به سایش نمونه­ها با توجه به افزایش چگالی نابجایی­ها و خرد شدن دانه­ها، تا میزان 90 درصد افزایش یافت. بررسی­ سطوح سایشی به وسیله SEM نشان داد که مکانیزم سایشی در نمونه­ها سایش چسبان اکسیدی است و افزایش تنش پسماند نمونه­ها سبب انتقال رژیم سایشی به سایش خراشان ملایم همراه با پدیدار شدن مناطق کندگی شد.
متن کامل [PDF 1830 kb]   (993 دریافت)    
نوع مقاله: پژوهشی اصیل | موضوع مقاله: تجزیه و تحلیل و انتخاب مواد
دریافت: 1399/12/23 | پذیرش: 1400/4/16 | انتشار: 1400/11/10

فهرست منابع
1. Nowell D, Duo P, Stewar I. F. Prediction of fatigue performance in gas turbine blades after. International Journal of Fatigue. 2003, 963-969. [DOI:10.1016/S0142-1123(03)00160-9]
2. Bagheri S, alii, Guagliano M. Effects of surfaces nanocrystallization induced by shot peening on material properties: a Review. Frattura ed Integrità Strutturale. 2009, vol. 7, 3-16. https://doi.org/10.3221/IGF-ESIS.07.01 [DOI:10.3221/IGF-ESIS.07.013.]
3. Ma X, Langelier B, Gault B, Subramanian S. Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening. Metallurgical and Materials Transactions A. 2017, Vol. 48, 2460-2471. [DOI:10.1007/s11661-017-4036-7]
4. Deng X. T, Cheng M, Zhang S. H, Song H. W, Taha M. Residual stresses and martensite transformation in AISI 304 austenitic stainless steel. Materials Research Express. 2018, 2053-1591. [DOI:10.1088/2053-1591/aae292]
5. Tlili S, Beliardouh N.E, Ramoul C.E, Bahi R, Abdullah O.I, Kaleli H, Samad M.A. Thermal Treatment Effect on Tribological and Corrosion Performances of 13Cr5Ni2Mo Super-Martensitic Stainless Steel. Tribology in Industry. 2018, vol. 40, 433-439. [DOI:10.24874/ti.2018.40.03.09]
6. Tianjian W, Yubing P, Zhenhuan G, Hua F, Gongxian Y. Stress Corrosion Behavior of 12Cr Martensite Steel for Steam Turbine LP Blade. The Minerals, Metals & Materials Society. 2014, pp 327-332. [DOI:10.1002/9781119027973.ch37]
7. ASM metals handbook volume 5, surface engineering,1994.
8. Wu Q, Xie D.J, Jia Z.M, Zhang Y.D, Zhang H.Z. Effect of shot peening on surface residual stress distribution of SiCp/2024Al. Composites Part B: Engineering.2018, 382-387. ttps://doi.org/10.1016/j.compositesb.2018.09.021 [DOI:10.1016/j.compositesb.2018.09.021]
9. Iadicola M. A, Gnäupel-Herold T. H. Effective X-ray elastic constant measurement for in situ stress measurement of biaxially strained AA5754-O. Materials Science and Engineering: A. 2012, Vol. 545, 168-175. [DOI:10.1016/j.msea.2012.02.100]
10. Lee S, Kim S, wang BH, Lee B.S, Lee C.G. Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel. Acta Materialia. 2002, vol.50, 4755-4762. [DOI:10.1016/S1359-6454(02)00313-0]
11. Y Sun. Sliding Wear Behaviour of Surface Mechanical Attrition Treated AISI 304 Stainless Steel. Tribology International. 2013, Vol. 57, 67-75. http://dx.doi.org/10.1016/j.triboint.2012.07.015 [DOI:10.1016/j.triboint.2012.07.015]
12. Liu Y, Ye D, Yong Q, Su J, Zhao K, Jiang W. Effect of Heat Treatment on Microstructure and Property of Cr13 Super Martensitic Stainless Steel. Journal of Iron and Steel Research International. vol. 2011, 18, 60-66. [DOI:10.1016/S1006-706X(11)60118-0]
13. Pfenning A, Kranzmann A. Potential of Martensitic Stainless Steel X5CrNiCuNb 4-16as Pipe Steel in Corrosive CCS Environment. International Journal of Environmental Science and Development. 2017, vol. 8, no. 7, pp. 466-473. [DOI:10.18178/ijesd.2017.8.7.998]
14. Ma X, Langelier B, Gault B, Subramanian S. Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening. Metallurgical and Materials Transactions A. 2017, Vol. 48, 2460-2471. [DOI:10.1007/s11661-017-4036-7]
15. Huang S, Zhu Y, Gui W, Peng P, Qiao H, Diao X. Chu P, Effects of laser shock processing on fatigue crack growth in Ti-17 titanium alloy. Journal of Materials Engineering and Performance. 2017, vol. 25, no. 2, pp. 813-821. [DOI:10.1007/s11665-017-2507-z]
16. Singh V, Marya M. Surface modification of oilfield alloys by ultrasonic impact peening: UNS N07718, N07716, G41400 and S17400. Journal of Materials Engineering and Performance. 2016, vol. 25, no. 1, pp. 338-347. [DOI:10.1007/s11665-015-1829-y]
17. Kim S. J, Hyun K. Y, Jang S. K. Effects of water cavitation peening on electrochemical characteristic by using micro-droplet cell of Al-Mg alloy. Current Applied Physics. 2012, vol. 12, pp. S24-S30. [DOI:10.1016/j.cap.2012.02.013]
18. Trsko L, Guagliano M, Bokuvka O, Novy F, Jambor M, Florkova Z. Influence of severe shot peening on the surface state and ultra-high-cycle fatigue behavior of an AW 7075 aluminum alloy. Journal of Materials Engineering and Per formance. 2017, vol. 26, pp 2784-2797. [DOI:10.1007/s11665-017-2692-9]
19. Zabeen S, Preuss M, Withers P.J. Evolution of a Laser Shock Peened Residual Stress Field Locally with Foreign Object Damage and Subsequent Fatigue Crack Growth. Acta Mater. 2015, Vol.83, pp 216-226. [DOI:10.1016/j.actamat.2014.09.032]
20. Pretorius J, Desai D, Snedden G. Effect of Laser Shock Peening on Fatigue Life at Stress Raiser Regions of a High-Speed Micro Gas Turbine Shaft: A Simulation Based Study. International Journal of Engineering Research in Africa. 2019, Vol. https://doi.org/10.4028/www.scientific.net/JERA.45.15 [DOI:45, 15-27. 10.4028/www.scientific.net/JERA.45.15.]
21. Vaxevanidis N.M, Manolakos D.E, Koutsomichalis A, Petropoulos G, Panagotas A, Sideris A, Mourlas A, Antoniou S.S, THE EFFECT OF SHOT PEENING ON SURFACE INTEGRITY AND TRIBOLOGICAL BEHAVIOUR OF TOOL STEELS, International Conference on Tribology . 2006, Parma, Italy.
22. Xuesong F, Niu Z, Deng Y, Zhang J, Liu C, Chen G, Li Z, Zhou W. Accuracy of X-ray diffraction measurement of residual stresses in shot peened titanium alloy samples. Nondestructive Testing and Evaluation. 2019, vol. 34, 164-177. [DOI:10.1080/10589759.2019.1573239]
23. Prevey P. X-ray Diffraction Residual Stress Techniques. Metals Handbook, Metals Park: American Society for Metals, 1986, 380-392. [DOI:10.31399/asm.hb.v10.a0001761]
24. Ahmed I.I, Adebisi J.A, Abdulkareem S, Sherry A.H, Investigation of surface residual stress profile on martensitic stainless steel weldment with X-ray diffraction. Journal of King Saud University - Engineering Sciences. 2016, vol. 30, 183-187. [DOI:10.1016/j.jksues.2016.01.004]
25. Gadalinska E, Malicki M. X-RAY Stress measurement in the institute of aviation possibilities and examples . Journal of KONES Powertrain and ransport. 2018, Vol. 25, 1231-4005. [DOI:10.5604/01.3001.0012.4327]
26. Yang R, Zhang X, Mallipeddi D, Angelou N, Toftegaard H.L, Li Y, Ahlström J, Lorentzen L, Wu G, Huang X. Effect of shot peening on the residual stress and mechanical behaviour of low temperature and high-temperature annealed martensitic gear steel 18CrNiMo7-6. Series: Materials Science and Engineering. 2017, Vol. 219, 012046. [DOI:10.1088/1757-899X/219/1/012046]
27. Segurado E, Belzunce F. J, Fernández I. Effects of low intensity shot peening treatments applied with different types of shots on the fatigue performance of a high-strength steel. Surface and Coatings Technology. 2018, Vol. 340, 25-35. [DOI:10.1016/j.surfcoat.2018.02.033]
28. Hirsch T.K, DA S. ROCHA A, Ramos F, Strohaecker T. Residual Stress-Affected Diffusion during Plasma Nitriding of Tool Steels. Metallurgical and Materials Transactions A. 2004. VO. 35A, 3523-3530. [DOI:10.1007/s11661-004-0189-2]
29. Wang C, Lai Y, Wang L, Wang C. Dislocation-based study on the influences of shot peening on fatigue resistance. Surface and Coatings Technology. 2020, Vol. 383, 125247. [DOI:10.1016/j.surfcoat.2019.125247]
30. Al-Obaid Y. F. The effect of shot peening on stress corrosion cracking behaviour of 2205-duplex stainless steel. Engineering Fracture Mechanics. 1995, Vol.51, 19-25. [DOI:10.1016/0013-7944(94)00213-2]
31. Messe O.M.D.M, Stekovic S, Hardy M.C, RAE C.M.F. Characterization of Plastic Deformation Induced by Shot-Peening in a Ni-Base Superalloy. the journal of the Minerals, Metals & Materials Society. 2014, Vol. 66, 2502-2515. [DOI:10.1007/s11837-014-1184-8]
32. Lee H, Kim D, Jung J, Pyoun Y, Shin K. Influence of peening on the corrosion properties of AISI 304 stainless steel. Corrosion scince,. 2009, vol. 51, 2826-2830. [DOI:10.1016/j.corsci.2009.08.008]
33. Lerma B.G, Shehadeh M.A, Balint D.S, Dini, D, Chen L, Eakins D.E. The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron. International Journal of Plasticity. 2017,vol. 96, 135-155. [DOI:10.1016/j.ijplas.2017.05.001]
34. Lin Q, Liu H, Zhu C, Chen D, Zhou S. Effects of different shot peening parameters on residual stress, surface roughness and cell size. Surface and Coatings Technology. 2020, Vol. 398, 126054. [DOI:10.1016/j.surfcoat.2020.126054]
35. Cullity B.D, Stock S.R. Elements of X-Ray Diffraction. Third Edition, Prentice-Hall Inc., New Jersey, 2001 , 388-389.
36. Ungár T. Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia. 2004, vol. 51, 777-781. [DOI:10.1016/j.scriptamat.2004.05.007]
37. Wang T, Yu J, Dong B. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel. Surface and Coatings Technology. 2006, vol. 200, 4777-4781. [DOI:10.1016/j.surfcoat.2005.04.046]
38. Kumar R.K, SampathKumaranb P, Seetharamuc ., Anand Kumard S, Pramode T. Investigation of Shot Peening Effect on Titanium Alloy Affecting Surface Residual Stress and Roughness for Aerospace Applications. Procedia Structural Integrity. 2019,Vol. 14, 134-141. [DOI:10.1016/j.prostr.2019.05.018]
39. Lv Y, Lei L.Q, Sun L.N. Influence of different combined severe shot peening and laser surface melting treatments on the fatigue performance of 20CrMnTi steel gear. Materials Science and Engineering A. 2016, vol. 658, 77-85. [DOI:10.1016/j.msea.2016.01.050]
40. An X.H, Lin Q.Y, Wu S.D, Zhang Z.F. Improved fatigue strengths of nanocrystalline Cu and Cu-Al alloys. Materials Research Letters. 2015, vol. 3, 135-141. [DOI:10.1080/21663831.2015.1029645]
41. Moshkovich A, Perfilyev V, Rapoport L. Effect of Plastic Deformation and Damage Development during Friction of fcc Metals in the Conditions of Boundary Lubrication.Lubricants . 2019, vol.7, 45. [DOI:10.3390/lubricants7050045]
42. Marques I.J, Silva F.J.d, França T, Sousa G, Francisca da Conceição Hermenegildo T, Abreu Santos T. Evaluation of Abrasive Wear in UNS S32101 and S32750 Duplex Stainless Steels Submitted to Friction Stir Processing. Materials Research. 2020, vol. 22, 1516-1439. [DOI:10.1590/1980-5373-mr-2018-0877]
43. Cai C, Song R, Liu S, Feng Y, Pei Z. Wear behavior and subsurface layer work hardening mechanism of Fe-24.1Mn-1.21C-0.48Si steel. Procedia Engineering. 2017, vol. 207, 2251-2256. [DOI:10.1016/j.proeng.2017.10.990]
44. Maleki E, Unal O. Optimization of Shot Peening Effective Parameters on Surface Hardness Improvement. Metals and Materials International, 2020. [DOI:10.1007/s12540-020-00758-x]
45. Maleki E, Unal, O, Kashyzadeh K.R. Efficiency Analysis of Shot Peening Parameters on Variations of Hardness, Grain Size and Residual Stress via Taguchi Approach. Metals and Materials International. 2019, vol. 25, 1436-1447. [DOI:10.1007/s12540-019-00290-7]
46. Pape F, Coors, T, Poll G. Comparing the Influence of Residual Stresses in Bearing Fatigue Life at Line and Point Contact. Materials Research Proceedings. 2018, vol. 6, 215-220. [DOI:10.15488/4928]
47. Tomaz Í.d.V, Martins M.C, Meneses Costa H.R, Napoleão Bastos I, Fonseca M.C. Influence of residual stress on the sliding wear of AISI 4340 steel˝, revista Matéria, 2020, vol.25, 1517-7076 . [DOI:10.1590/s1517-707620200002.1018]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.