Volume 22, Issue 8 (August 2022)                   Modares Mechanical Engineering 2022, 22(8): 541-553 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ashrafi M S, Nazari M, Sepehry N, Mahdizadeh Rokhi M, Samimi P, Attarchi M. Design and implementation of a fuzzy output feedback assistive controller for a series-elastic-actuator-driven knee exoskeleton. Modares Mechanical Engineering 2022; 22 (8) :541-553
URL: http://mme.modares.ac.ir/article-15-51295-en.html
1- Shahrood University of Technology
2- Shahrood University of Technology , nazari_mostafa@shahroodut.ac.ir
3- shahrood University of Technology
Abstract:   (1571 Views)
The series elastic actuators make more comfort in the use of assistive exoskeletons. In this paper, an assistive controller is designed for a series-elastic-actuator-driven knee exoskeleton to restore normative mobility of individuals with weak muscles. The main target of the proposed controller is to modify the dynamics performance of the coupled human-exoskeleton system. In other words, the proposed controller modifies the relationship between the net muscle torque exerted by the human and the resulting angular motion. There are fewer sensors in the proposed intent-independent method relative to other methods. Moreover, there are less controller coefficients to regulate where these coefficients are extracted from a type zero Takagi-Sugeno-Kang fuzzy system. The performance of the controller is evaluated by simulations and experiments. The amplitude of the EMG signals decreased in a healthy person worn the SUT-KneeExo. Moreover, the proposed algorithm has a better performance in comparison with integral admittance shaping mothed and output feedback assistive controller. In other words, the amplitude of the integral admittance is more and the phase lag is less than other methods.
Full-Text [PDF 1508 kb]   (780 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2021/04/2 | Accepted: 2021/11/27 | Published: 2022/08/1

References
1. [1] J. Carol Culpepper, Merriam‐Webster Online: The Language Center, Electron. Resour. Rev. 4 (2000) 9-11. [DOI:10.1108/err.2000.4.1_2.9.11]
2. [2] J.E. Pratt, B.T. Krupp, C.J. Morse, S.H. Collins, The RoboKnee: An exoskeleton for enhancing strength and endurance during walking, Proc. - IEEE Int. Conf. Robot. Autom. 2004 (2004) 2430-2435. https://doi.org/10.1109/ROBOT.2004.1307425 [DOI:10.1109/robot.2004.1307425.]
3. [3] L.E. Miller, A.K. Zimmermann, W.G. Herbert, Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: Systematic review with meta-analysis, Med. Devices Evid. Res. 9 (2016) 455-466. https://doi.org/10.2147/MDER.S103102 [DOI:10.2147/MDER.S103102.]
4. [4] R. Ghaddar, A.S.M. Mohammad, A Review of Lower Limb Exoskeleton Assistive Devices for Sit-to-Stand and Gait Motion, Int. J. Curr. Eng. Technol. 9 (2019) 105-111.
5. [5] T. Yan, M. Cempini, C.M. Oddo, N. Vitiello, Review of assistive strategies in powered lower-limb orthoses and exoskeletons, Rob. Auton. Syst. 64 (2015) 120-136. https://doi.org/10.1016/j.robot.2014.09.032 [DOI:10.1016/j.robot.2014.09.032.]
6. [6] R.S. Mosher, Handyman to Hardiman, SAE Tech. Pap. (1967). https://doi.org/10.4271/670088 [DOI:10.4271/670088.]
7. [7] L. Zhang, G. Liu, B. Han, Z. Wang, H. Li, Y. Jiao, Assistive devices of human knee joint: A review, Rob. Auton. Syst. 125 (2020). https://doi.org/10.1016/j.robot.2019.103394 [DOI:10.1016/j.robot.2019.103394.]
8. [8] D. Shi, W. Zhang, W. Zhang, X. Ding, A Review on Lower Limb Rehabilitation Exoskeleton Robots, Chinese J. Mech. Eng. (English Ed. 32 (2019). https://doi.org/10.1186/s10033-019-0389-8 [DOI:10.1186/s10033-019-0389-8.]
9. [9] S. Sirawattanakul, W. Sanngoen, Review of upper limb exoskeleton for rehabilitation and assistive application, Int. J. Mech. Eng. Robot. Res. 9 (2020) 752-758. https://doi.org/10.18178/ijmerr.9.5.752-758 [DOI:10.18178/ijmerr.9.5.752-758.]
10. [10] B. Kalita, J. Narayan, S.K. Dwivedy, Development of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review, Int. J. Soc. Robot. 13 (2021) 775-793. https://doi.org/10.1007/s12369-020-00662-9 [DOI:10.1007/s12369-020-00662-9.]
11. [11] Y. Sankai, HAL: Hybrid assistive limb based on cybernics, Springer Tracts Adv. Robot. 66 (2010) 25-34. https://doi.org/10.1007/978-3-642-14743-2_3 [DOI:10.1007/978-3-642-14743-2_3.]
12. [12] H. Kawamoto, T. Hayashi, T. Sakurai, K. Eguchi, Y. Sankai, Development of single leg version of HAL for hemiplegia, Proc. 31st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. Eng. Futur. Biomed. EMBC 2009. (2009) 5038-5043. https://doi.org/10.1109/IEMBS.2009.5333698 [DOI:10.1109/IEMBS.2009.5333698.]
13. [13] H. Kawamoto, Y. Sankai, Power assist method based on Phase Sequence and muscle force condition for HAL, Adv. Robot. 19 (2005) 717-734. https://doi.org/10.1163/1568553054455103 [DOI:10.1163/1568553054455103.]
14. [14] K. Kiguchi, Y. Hayashi, An EMG-based control for an upper-limb power-assist exoskeleton robot, IEEE Trans. Syst. Man, Cybern. Part B Cybern. 42 (2012) 1064-1071. https://doi.org/10.1109/TSMCB.2012.2185843 [DOI:10.1109/TSMCB.2012.2185843.]
15. [15] J. Rosen, M. Brand, M.B. Fuchs, M. Arcan, A myosignal-based powered exoskeleton system, IEEE Trans. Syst. Man, Cybern. Part ASystems Humans. 31 (2001) 210-222. https://doi.org/10.1109/3468.925661 [DOI:10.1109/3468.925661.]
16. [16] H.S. Cheng, M.S. Ju, C.C.K. Lin, Improving Elbow Torque Output of Stroke Patients with Assistive Torque Controlled by EMG Signals, J. Biomech. Eng. 125 (2003) 881-886. https://doi.org/10.1115/1.1634284 [DOI:10.1115/1.1634284.]
17. [17] A.M. Khan, D. won Yun, M.A. Ali, K.M. Zuhaib, C. Yuan, J. Iqbal, J. Han, K. Shin, C. Han, Passivity based adaptive control for upper extremity assist exoskeleton, Int. J. Control. Autom. Syst. 14 (2016) 291-300. https://doi.org/10.1007/s12555-014-0250-x [DOI:10.1007/s12555-014-0250-x.]
18. [18] N. Karavas, A. Ajoudani, N. Tsagarakis, J. Saglia, A. Bicchi, D. Caldwell, Tele-impedance based assistive control for a compliant knee exoskeleton, Rob. Auton. Syst. 73 (2015) 78-90. https://doi.org/10.1016/j.robot.2014.09.027 [DOI:10.1016/j.robot.2014.09.027.]
19. [19] J. Huang, W. Huo, W. Xu, S. Mohammed, Y. Amirat, Control of Upper-Limb Power-Assist Exoskeleton Using a Human-Robot Interface Based on Motion Intention Recognition, IEEE Trans. Autom. Sci. Eng. 12 (2015) 1257-1270. https://doi.org/10.1109/TASE.2015.2466634 [DOI:10.1109/TASE.2015.2466634.]
20. [20] S. Hussain, S.Q. Xie, P.K. Jamwal, Adaptive impedance control of a robotic orthosis for gait rehabilitation, IEEE Trans. Cybern. 43 (2013) 1025-1034. https://doi.org/10.1109/TSMCB.2012.2222374 [DOI:10.1109/TSMCB.2012.2222374.]
21. [21] G. Aguirre-Ollinger, Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: Adaptation of muscle activation and movement frequency, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 229 (2015) 52-68. https://doi.org/10.1177/0954411914567213 [DOI:10.1177/0954411914567213.]
22. [22] R. Ronsse, T. Lenzi, N. Vitiello, B. Koopman, E. Van Asseldonk, S.M.M. De Rossi, J. Van Den Kieboom, H. Van Der Kooij, M.C. Carrozza, A.J. Ijspeert, Oscillator-based assistance of cyclical movements: Model-based and model-free approaches, Med. Biol. Eng. Comput. 49 (2011) 1173-1185. https://doi.org/10.1007/s11517-011-0816-1 [DOI:10.1007/s11517-011-0816-1.]
23. [23] K. Kamali, A.A. Akbari, A. Akbarzadeh, Implementation of a trajectory predictor and an exponential sliding mode controller on a knee exoskeleton robot, 16 (2016) 79-90.
24. [24] K. Kiguchi, T. Tanaka, T. Fukuda, Neuro-fuzzy control of a robotic exoskeleton with EMG signals, IEEE Trans. Fuzzy Syst. 12 (2004) 481-490. https://doi.org/10.1109/TFUZZ.2004.832525 [DOI:10.1109/TFUZZ.2004.832525.]
25. [25] A.M. Khan, D.W. Yun, M.A. Ali, J. Han, K. Shin, C. Han, Adaptive impedance control for upper limb assist exoskeleton, Proc. - IEEE Int. Conf. Robot. Autom. 2015-June (2015) 4359-4366. https://doi.org/10.1109/ICRA.2015.7139801 [DOI:10.1109/ICRA.2015.7139801.]
26. [26] A. Morbi, M. Ahmadi, A.D.C. Chan, R. Langlois, Stability-guaranteed assist-as-needed controller for powered orthoses, IEEE Trans. Control Syst. Technol. 22 (2014) 745-752. https://doi.org/10.1109/TCST.2013.2259593 [DOI:10.1109/TCST.2013.2259593.]
27. [27] R. Baud, A.R. Manzoori, A. Ijspeert, M. Bouri, Review of control strategies for lower-limb exoskeletons to assist gait, J. Neuroeng. Rehabil. 18 (2021). https://doi.org/10.1186/s12984-021-00906-3 [DOI:10.1186/s12984-021-00906-3.]
28. [28] W.Z. Li, G.Z. Cao, A. Bin Zhu, Review on Control Strategies for Lower Limb Rehabilitation Exoskeletons, IEEE Access. 9 (2021) 123040-123060. https://doi.org/10.1109/ACCESS.2021.3110595 [DOI:10.1109/ACCESS.2021.3110595.]
29. [29] U. Nagarajan, G. Aguirre-Ollinger, A. Goswami, Integral Admittance Shaping for exoskeleton control, Proc. - IEEE Int. Conf. Robot. Autom. 2015-June (2015) 5641-5648. https://doi.org/10.1109/ICRA.2015.7139989 [DOI:10.1109/ICRA.2015.7139989.]
30. [30] U. Nagarajan, G. Aguirre-Ollinger, A. Goswami, Integral admittance shaping: A unified framework for active exoskeleton control, Rob. Auton. Syst. 75 (2016) 310-324. https://doi.org/10.1016/j.robot.2015.09.015 [DOI:10.1016/j.robot.2015.09.015.]
31. [31] I. Kardan, A. Akbarzadeh, Output feedback assistive control of single-DOF SEA powered exoskeletons, Ind. Rob. 44 (2017) 275-287. https://doi.org/10.1108/IR-08-2016-0214 [DOI:10.1108/IR-08-2016-0214.]
32. [32] I. Kardan, A. Akbarzadeh, Robust output feedback assistive control of a compliantly actuated knee exoskeleton, Rob. Auton. Syst. 98 (2017) 15-29. https://doi.org/10.1016/j.robot.2017.09.006 [DOI:10.1016/j.robot.2017.09.006.]
33. [33] Y. Niu, Z. Song, J. Dai, Kinematic analysis and optimization of a planar parallel compliant mechanism for self-alignment knee exoskeleton, Mech. Sci. 9 (2018) 405-416. https://doi.org/10.5194/ms-9-405-2018 [DOI:10.5194/ms-9-405-2018.]
34. [34] Chris Kirtly, Clinical Gait Analysis: Theory and practice, Elsevier. 3 (2006) 2007. http://www.questia.com/PM.qst?a=o&docId=26347764.
35. [35] G.C. Agarwal, C.L. Gottlieb, Compliance of the human ankle joint, J. Biomech. Eng. 99 (1977) 166-170. https://doi.org/10.1115/1.3426285 [DOI:10.1115/1.3426285.]
36. [36] D. Vélez Día, S.S. Moreno Gutiérrez, Biomechanics and Motor Control of Human Movement, XIKUA Boletín Científico La Esc. Super. Tlahuelilpan. 1 (2013). https://doi.org/10.29057/xikua.v1i1.1175 [DOI:10.29057/xikua.v1i1.1175.]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.