Today, the application of ultrasonic tools in various processes such as machining, welding, homogenizing, etc., has become widespread. One of the most important and key components in the transfer of acoustic energy in emulsion homogenization applications is the ultrasonic horn. This part is stable from the point of view of energy, but the amount of vibration amplitude can be changed by changing the shape and material. The purpose of this paper is to analyze the multistage ultrasonic horn to achieve the desired vibration amplitude in various applications. Optimal horn design has been done with the aim of increasing the amplitude of vibration, increasing and distributing the wave transmission surface and considering the strength of the horn, the appropriate length to diameter ratio to achieve uniform cavitation in the emulsion. The goal is to achieve a horn with a high amplification factor and a larger and wider radiation area at the end and lateral area of the horn. The high vibration amplitude and wave propagation area at the tip and the lateral area of the horn increase the amount of cavitation in the emulsion process, and the wider the wave propagation regions, the more efficient the homogenization process will be.
Article Type:
Original Research |
Subject:
Fluids Machines Received: 2021/04/18 | Accepted: 2021/08/21 | Published: 2022/01/30