Volume 22, Issue 4 (April 2022)                   Modares Mechanical Engineering 2022, 22(4): 265-280 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behtaj M, Babaei H, Mirzababaie Mostofi T. An experimental investigation into deformation modes and failure mechanism of welded rectangular plates under repeated blast loading. Modares Mechanical Engineering 2022; 22 (4) :265-280
URL: http://mme.modares.ac.ir/article-15-55346-en.html
1- Ph.D. Candidate, Department of Mechanical Engineering, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran.
2- Associate Professor, Department of Mechanical Engineering, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran. , ghbabaei@guilan.ac.ir
3- Assistant Professor, Department of Mechanical Engineering, Faculty of Mechanical Engineering, University of Eyvanekey, Eyvanekey, Iran.
Abstract:   (1754 Views)
In this paper, the dynamic response of steel plates under repeated blast loading using a ballistic pendulum system were investigated. In this regard, experiments were performed on three different configurations: unwelded, welded with single and double welding lines. To apply the dynamic load in a wide range, the plastic explosive charge (C4) in different masses of 25, 35, 45, and 50 g were used. Besides, to investigate the behavior of the structure under repeated loading, experiments were tested on up to 3 loads. Experimental observations demonstrate that with increasing charge mass, the large inelastic deformation with necking and tensile tearing around of the boundary were observed in higher charge masses and loading repetitions in higher numbers. For the unwelded plate, at the 3rd load with a charge mass of 25g, a change in the failure mode was observed (large inelastic deformation with necking around part of the boundary), however, for the welded plate with a single weld line, the same deformation mode occurred at the 3rd blast load by the charge mass of 35g. For the welded plate with two weld lines, the same failure mode was observed at the 3rd blast load by the charge mass of 45g. These observations indicate the effect of the weld line and its numbers on the variation of failure modes. The obtained result is one of the main objectives of the present study to show how using welding lines and their arrangements affect the deformation mode and the failure mechanism of steel plates.
Full-Text [PDF 1218 kb]   (1035 Downloads)    
Article Type: Original Research | Subject: Impact Mechanics
Received: 2021/09/3 | Accepted: 2021/11/21 | Published: 2022/03/30

References
1. T.M. Mostofi, H. Babaei, M. Alitavoli, Theoretical analysis on the effect of uniform and localized impulsive loading on the dynamic plastic behaviour of fully clamped thin quadrangular plates, Thin-Walled Structures, 109 (2016) 367-376. [DOI:10.1016/j.tws.2016.10.009]
2. T. Mirzababaie Mostofi, H. Babaei, M. Alitavoli, Experimental and theoretical study on large ductile transverse deformations of rectangular plates subjected to shock load due to gas mixture detonation, Strain, 53(4) (2017) e12235. [DOI:10.1111/str.12235]
3. T.M. Mostofi, A. Golbaf, A. Mahmoudi, M. Alitavoli, H. Babaei, Closed-form analytical analysis on the effect of coupled membrane and bending strains on the dynamic plastic behaviour of fully clamped thin quadrangular plates due to uniform and localized impulsive loading, Thin-Walled Structures, 123 (2018) 48-56. [DOI:10.1016/j.tws.2017.11.010]
4. H. Babaei, T.M. Mostofi, S.H. Sadraei, Effect of gas detonation on response of circular plate-experimental and theoretical, Struct Eng Mech, 56(4) (2015) 535-548. [DOI:10.12989/sem.2015.56.4.535]
5. H. Babaei, T. Mirzababaie Mostofi, M. Alitavoli, Experimental investigation and analytical modelling for forming of circular-clamped plates by using gases mixture detonation, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5) (2020) 1102-1111. [DOI:10.1177/0954406215614336]
6. N. Jones, Structural impact, Cambridge university press, 2012.
7. S.C.K. Yuen, G. Nurick, G. Langdon, Y. Iyer, Deformation of thin plates subjected to impulsive load: Part III-an update 25 years on, International Journal of Impact Engineering, 107 (2017) 108-117. [DOI:10.1016/j.ijimpeng.2016.06.010]
8. Y.-P. Zhao, Suggestion of a new dimensionless number for dynamic plastic response of beams and plates, Archive of Applied Mechanics, 68(7-8) (1998) 524-538. [DOI:10.1007/s004190050184]
9. R. Rajendran, J. Lee, Blast loaded plates, Marine Structures, 22(2) (2009) 99-127. [DOI:10.1016/j.marstruc.2008.04.001]
10. Mostofi TM, Babaei H, Alitavoli M, Lu G, Ruan D. Large transverse deformation of double-layered rectangular plates subjected to gas mixture detonation load. International Journal of Impact Engineering. 2019 Mar 1;125:93-106. [DOI:10.1016/j.ijimpeng.2018.11.005]
11. Mostofi TM, Sayah-Badkhor M, Rezasefat M, Ozbakkaloglu T, Babaei H. Gas mixture detonation load on polyurea-coated aluminum plates. Thin-Walled Structures. 2020 Oct 1;155:106851. [DOI:10.1016/j.tws.2020.106851]
12. S.C.K. Yuen, G. Nurick, W. Verster, N. Jacob, A. Vara, V. Balden, D. Bwalya, R. Govender, M. Pittermann, Deformation of mild steel plates subjected to large-scale explosions, International journal of impact engineering, 35(8) (2008) 684-703. [DOI:10.1016/j.ijimpeng.2008.02.001]
13. M. Rezasefat, T. Mirzababaie Mostofi, H. Babaei, M. Ziya-Shamami, M. Alitavoli, Dynamic plastic response of double-layered circular metallic plates due to localized impulsive loading, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(7) (2019) 1449-1471. [DOI:10.1177/1464420718760640]
14. M. Rezasefat, T.M. Mostofi, T. Ozbakkaloglu, Repeated localized impulsive loading on monolithic and multi-layered metallic plates, Thin-Walled Structures, 144 (2019) 106332. [DOI:10.1016/j.tws.2019.106332]
15. T. Børvik, A. Hanssen, M. Langseth, L. Olovsson, Response of structures to planar blast loads-A finite element engineering approach, Computers & Structures, 87(9-10) (2009) 507-520. [DOI:10.1016/j.compstruc.2009.02.005]
16. I.G. Cullis, J. Schofield, A. Whitby, Assessment of blast loading effects-Types of explosion and loading effects, International journal of pressure vessels and piping, 87(9) (2010) 493-503. [DOI:10.1016/j.ijpvp.2010.07.003]
17. C. Soutis, G. Mohamed, A. Hodzic, Modelling the structural response of GLARE panels to blast load, Composite Structures, 94(1) (2011) 267-276. [DOI:10.1016/j.compstruct.2011.06.014]
18. K. Spranghers, I. Vasilakos, D. Lecompte, H. Sol, J. Vantomme, Numerical simulation and experimental validation of the dynamic response of aluminum plates under free air explosions, International Journal of Impact Engineering, 54 (2013) 83-95. [DOI:10.1016/j.ijimpeng.2012.10.014]
19. N. Mehreganian, L. Louca, G. Langdon, R. Curry, N. Abdul-Karim, The response of mild steel and armour steel plates to localised air-blast loading-comparison of numerical modelling techniques, International Journal of Impact Engineering, 115 (2018) 81-93. [DOI:10.1016/j.ijimpeng.2018.01.010]
20. Yuen SC, Nurick GN. Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: subjected to uniform blast load. International Journal of Impact Engineering. 2005 Jan 1;31(1):55-83. [DOI:10.1016/j.ijimpeng.2003.09.048]
21. Langdon GS, Yuen SC, Nurick GN. Experimental and numerical studies on the response of quadrangular stiffened plates. Part II: localised blast loading. International Journal of Impact Engineering. 2005 Jan 1;31(1):85-111. [DOI:10.1016/j.ijimpeng.2003.09.050]
22. Langdon GS, Lee WC, Louca LA. The influence of material type on the response of plates to air-blast loading. International Journal of Impact Engineering. 2015 Apr 30;78:150-60. [DOI:10.1016/j.ijimpeng.2014.12.008]
23. Cerik BC. Large inelastic deformation of aluminium alloy plates in high-speed vessels subjected to slamming. Journal of Marine Science and Technology. 2017 Jun 1;22(2):301-12. [DOI:10.1007/s00773-016-0411-0]
24. Zhu L, Shi S, Jones N. Dynamic response of stiffened plates under repeated impacts. International Journal of Impact Engineering. 2018 Jul 1;117:113-22. [DOI:10.1016/j.ijimpeng.2018.03.006]
25. Liu B, Dong A, Villavicencio R, Liu K, Guedes Soares C. Experimental and numerical study on the penetration of stiffened aluminium alloy plates punched by a hemi-cylindrical indenter. Ships and Offshore Structures. 2020 Oct 21:1-4. [DOI:10.1080/17445302.2020.1835052]
26. Xu S, Wen H, Liu B, Guedes Soares C. Experimental and numerical analysis of dynamic failure of welded aluminium alloy plates under air blast loading. Ships and Offshore Structures. 2020 Oct 24:1-0. [DOI:10.1080/17445302.2020.1835076]
27. Li Y, Ren X, Zhao T, Xiao D, Liu K, Fang D. Dynamic response of stiffened plate under internal blast: Experimental and numerical investigation. Marine Structures. 2021 May 1;77:102957. [DOI:10.1016/j.marstruc.2021.102957]
28. R. Teeling-Smith, G. Nurick, The deformation and tearing of thin circular plates subjected to impulsive loads, International Journal of Impact Engineering, 11(1) (1991) 77-91. [DOI:10.1016/0734-743X(91)90032-B]
29. Teeling-Smith RG, Nurick GN. The deformation and tearing of thin circular plates subjected to impulsive loads. International Journal of Impact Engineering.1991;11(1):77-91. [DOI:10.1016/0734-743X(91)90032-B]
30. Safari KH, Zamani J, Khalili SM, Jalili S. Experimental, theoretical, and numerical studies on the response of square plates subjected to blast loading. The Journal of Strain Analysis for Engineering Design. 2011 Nov;46(8):805-16. [DOI:10.1177/0309324711416183]
31. Ashani JZ, Ghamsari AK. Theoretical and experimental analysis of plastic response of isotropic circular plates subjected to underwater explosion loading. Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe. 2008 Feb;39(2):171-5. [DOI:10.1002/mawe.200700256]
32. Zamani J, Safari KH, Ghamsari AK, Zamiri A. Experimental analysis of clamped AA5010 and steel plates subjected to blast loading and underwater explosion. The Journal of Strain Analysis for Engineering Design. 2011 Apr;46(3):201-12. [DOI:10.1177/0309324710396601]
33. Henchie TF, Yuen SC, Nurick GN, Ranwaha N, Balden VH. The response of circular plates to repeated uniform blast loads: An experimental and numerical study. International Journal of Impact Engineering. 2014 Dec 1;74:36-45. [DOI:10.1016/j.ijimpeng.2014.02.021]
34. Ziya-Shamami M, Babaei H, Mostofi TM, Khodarahmi H. Structural response of monolithic and multi-layered circular metallic plates under repeated uniformly distributed impulsive loading: An experimental study. Thin-Walled Structures. 2020 Dec 1;157:107024. [DOI:10.1016/j.tws.2020.107024]
35. O. Grong and O. M. Akselsen, "HAZ Grain Growth Me-chanism in Welding of Low Carbon Microalloyed Steels," Acta Metallurgica, Vol. 34, No. 9, 1986, pp. 1807-1815. [DOI:10.1016/0001-6160(86)90125-2]
36. C. Thaulow, A. J. Paauw, A. Gunleiksrud and O. J. Naess, "Heat Affected Zone Toughness of Low Carbon Micro-alloyed Steel," Metal Construct, Vol. 17, No. 2, 1985, pp. 94-99.
37. A. G. Olabi and M. J. S. Hashmi, "The Microstructure and Mechanical Properties of Low Carbon Steel Welded Components after the Application of PWHT," Journal of Material Processing Technology, Vol. 56, No. 1-4, 1996, pp. 88-97. [DOI:10.1016/0924-0136(95)01824-7]
38. Jamali A, Babaei H, Nariman-Zadeh N, Ashraf Talesh S, Mirzababaie Mostofi T. Multi-objective optimum design of ANFIS for modelling and prediction of deformation of thin plates subjected to hydrodynamic impact loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2020;234(3):368-78. [DOI:10.1177/1464420716660332]
39. Babaei H, Mostofi TM, Alitavoli M. Study on the response of circular thin plate under low velocity impact. Geomechanics and Engineering. 2015;9(2):207-18. [DOI:10.12989/gae.2015.9.2.207]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.