1. Azeem M, Ya HH, Kumar M, Stabla P, Smolnicki M, Gemi L, et al. Application of filament winding technology in composite pressure vessels and challenges: a review. Journal of Energy Storage. 2022;49:103468. [
DOI:10.1016/j.est.2021.103468]
2. Wu L, Zhang Z, Zhang Q, Le G, editors. Study on compression load and energy absorption characteristics of glass fiber honeycomb tube. Journal of Physics: Conference Series; 2022: IOP Publishing. [
DOI:10.1088/1742-6596/2174/1/012059]
3. Thirumavalavan K, Sarukasan D. Experimental investigation on multi-layered filament wound basalt/E-glass hybrid fiber composite tubes. Materials Research Express. 2022;9(4):045301. [
DOI:10.1088/2053-1591/ac608d]
4. Abdewi E. FRP Composite Tube Subjected to Quasi-Static Axial and Lateral Compression Loadings. 2016. [
DOI:10.1016/B978-0-12-803581-8.04081-9]
5. Jamal-Omidi M, Choopanian Benis A. A numerical study on energy absorption capability of lateral corrugated composite tube under axial crushing. International journal of crashworthiness. 2021;26(2):147-58. [
DOI:10.1080/13588265.2019.1699721]
6. Elahi SA, Rouzegar J, Niknejad A, Assaee H. Theoretical study of absorbed energy by empty and foam-filled composite tubes under lateral compression. Thin-Walled Structures. 2017;114:1-10. [
DOI:10.1016/j.tws.2017.01.029]
7. Dadashi A, Rahimi G. Experimental and numerical investigation of buckling and post-buckling behavior of filament wound composite cylinders under lateral compression loading by parallel rigid plates. Journal of Science and Technology of Composites. 2019;6(1):151-66.
8. Li S, Reid SR, Soden PD, Hinton MJ. Modelling transverse cracking damage in thin, filament-wound tubes subjected to lateral indentation followed by internal pressure. International Journal of Mechanical Sciences. 2005;47(4):621-46. [
DOI:10.1016/j.ijmecsci.2004.12.015]
9. Eggers F, Almeida JHS, Azevedo CB, Amico SC. Mechanical response of filament wound composite rings under tension and compression. Polymer Testing. 2019;78:105951. [
DOI:10.1016/j.polymertesting.2019.105951]
10. Mohammed MA, Tarfaoui M. A Progressive Damage Modelling of Glass/Epoxy Cylindrical Structure Subjected to Low-Velocity Impact. Engineering Failure Analysis. 2022;134:106036. [
DOI:10.1016/j.engfailanal.2022.106036]
11. Zhao C, Ren R, Zhong J, Goh KL, Zhang K, Zhang Z, et al., editors. Intralaminar crack propagation of glass fiber reinforced composite laminate. Structures; 2022: Elsevier. [
DOI:10.1016/j.istruc.2022.05.064]
12. Dimple D, Elango P, Prakash MK, editors. Simulative Estimation of Reaction Force and Drill Accuracy of CFRP Composites. Materials Science Forum; 2020: Trans Tech Publ. [
DOI:10.4028/www.scientific.net/MSF.978.344]
13. Beheshtizadeh N, Mostafapour A, Davoodi S. Three point bending test of glass/epoxy composite health monitoring by acoustic emission. Alexandria Engineering Journal. 2019;58(2):567-78. [
DOI:10.1016/j.aej.2019.03.006]
14. Alimirzaei S, Najafabadi MA, Ali ABM. Investigation of failure mechanism of the composite tubes made by filament winding process by acoustic emission method. Amirkabir Journal of Mechanical Engineering. 2022(Articles in Press).
15. Oskouei AR, Zucchelli A, Ahmadi M, Minak G. An integrated approach based on acoustic emission and mechanical information to evaluate the delamination fracture toughness at mode I in composite laminate. Materials & Design. 2011;32(3):1444-55. [
DOI:10.1016/j.matdes.2010.08.048]
16. Mohamad F, Hossein H, Farzad P, Ahmadi Najaf Abadi M, editors. Composite materials damage characterization under quasi-static 3-point bending test using fuzzy C-means clustering. Applied Mechanics and Materials; 2012: Trans Tech Publ. [
DOI:10.4028/www.scientific.net/AMM.110-116.1221]
17. Ameur MB, El Mahi A, Rebiere J-L, Gimenez I, Beyaoui M, Abdennadher M, et al. Investigation and identification of damage mechanisms of unidirectional carbon/flax hybrid composites using acoustic emission. Engineering Fracture Mechanics. 2019;216:106511. [
DOI:10.1016/j.engfracmech.2019.106511]
18. Guo W, Xue P, Yang J. Nonlinear progressive damage model for composite laminates used for low-velocity impact. Applied Mathematics and Mechanics. 2013;34(9):1145-54. [
DOI:10.1007/s10483-013-1733-7]
19. Pederson J. Finite element analysis of carbon fiber composite ripping using ABAQUS: Clemson University; 2008.
20. Le M, Bainier H, Néron D, Ha-Minh C, Ladevèze P. On matrix cracking and splits modeling in laminated composites Part A Applied science and manufacturing. 2018. [
DOI:10.1016/j.compositesa.2018.10.002]
21. Li X, Ma D, Liu H, Tan W, Gong X, Zhang C, et al. Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact. Composite structures. 2019;207:727-39. [
DOI:10.1016/j.compstruct.2018.09.093]
22. Liu P, Zheng J. Recent developments on damage modeling and finite element analysis for composite laminates: A review. Materials & Design. 2010;31(8):3825-34. [
DOI:10.1016/j.matdes.2010.03.031]
23. Chen D-M, Xu Y, Zhu W. A comprehensive study on detection of hidden delamination damage in a composite plate using curvatures of operating deflection shapes. Journal of Nondestructive Evaluation. 2019;38(2):1-18. [
DOI:10.1007/s10921-019-0591-8]
24. Marec A, Thomas J-H, El Guerjouma R. Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data. Mechanical systems and signal processing. 2008;22(6):1441-64. [
DOI:10.1016/j.ymssp.2007.11.029]
25. Fotouhi M, Saeedifar M, Sadeghi S, Ahmadi Najafabadi M, Minak G. Investigation of the damage mechanisms for mode I delamination growth in foam core sandwich composites using acoustic emission. Structural Health Monitoring. 2015;14(3):265-80. [
DOI:10.1177/1475921714568403]
26. Alimirzaei S, Najafabadi MA, Nikbakht A, Pahlavan L. Damage mechanism characterization of±35° and±55° FW composite tubes using acoustic emission method. International Journal of Damage Mechanics. 2022:10567895221095603. [
DOI:10.1177/10567895221095603]
27. Gutkin R, Green C, Vangrattanachai S, Pinho S, Robinson P, Curtis P. On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses. Mechanical systems and signal processing. 2011;25(4):1393-407. [
DOI:10.1016/j.ymssp.2010.11.014]
28. Fotouhi M, Najafabadi MA. Acoustic emission-based study to characterize the initiation of delamination in composite materials. Journal of Thermoplastic Composite Materials. 2016;29(4):519-37. [
DOI:10.1177/0892705713519811]
29. Ni Q-Q, Iwamoto M. Wavelet transform of acoustic emission signals in failure of model composites. Engineering Fracture Mechanics. 2002;69(6):717-28. [
DOI:10.1016/S0013-7944(01)00105-9]
30. Mohammadi R, Najafabadi MA, Saeedifar M, Yousefi J, Minak G. Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites. Composites Part B: Engineering. 2017;108:427-35. [
DOI:10.1016/j.compositesb.2016.09.101]
31. De Groot PJ, Wijnen PA, Janssen RB. Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites. Composites Science and Technology. 1995;55(4):405-12. [
DOI:10.1016/0266-3538(95)00121-2]
32. Mahdi E, Sebaey T. Crushing behavior of hybrid hexagonal/octagonal cellular composite system: Aramid/carbon hybrid composite. Materials & Design. 2014;63:6-13. [
DOI:10.1016/j.matdes.2014.06.001]
33. Almeida Jr JHS, Ribeiro ML, Tita V, Amico SC. Damage and failure in carbon/epoxy filament wound composite tubes under external pressure: Experimental and numerical approaches. Materials & Design. 2016;96:431-8. [
DOI:10.1016/j.matdes.2016.02.054]