1. [1] M. Tomphson, "The navys amazing ocean-powered underwater drone," 2013. [Online]. Available: http://swampland.time.com/2013/12 22/navy-underwater-drone/
2. [2] D. R. Blidberg, "The development of autonomous underwater vehicles (auv); a brief summary," in IEEE International Conference on Robotics and Automation (ICRA), vol. 4, 2001.
3. [3] M. Rusling, "Gliders will aid naval research," 2009.
4. [4] Teledyne, "Teledyne webb research reaches second milestone with u.s. navy lbs-glider program," 2011. [Online]. Available: http://www.webbresearch.com/ newscenter/Reaches Second Milestone.aspx
5. [5] Alsema, "Seaexplorer, https://www.alseamar-alcen.com/ products/ underwaterglider / seaexplorer," 2017.
6. [6] D. C. Webb, P. J. Simonetti, and C. P. Jones, "Slocum: An underwater glider propelled by environmental energy," IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 447-452, 2001. [
DOI:10.1109/48.972077]
7. [7] J. Sherman, R. E. Davis, W. Owens, and J. Valdes, "The autonomous underwater glider" spray"," IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 437-446, 2001. [
DOI:10.1109/48.972076]
8. [8] C. Eriksen, T. Osse, R. Light, T. Wen, T. Lehman, P. Sabin, J. Ballard, and A. Chiodi, "Seaglider: a long-range autonomous underwater vehicle for oceanographic research," IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 424-436, Oct 2001. [
DOI:10.1109/48.972073]
9. [9] B. Ullah, M. Ovinis, M. B. Baharom, M. Javaid, and S. Izhar, "Underwater gliders control strategies: A review," in Control Conference (ASCC), 2015 10th Asian. IEEE, 2015, pp. 1-6. [
DOI:10.1109/ASCC.2015.7244859]
10. [10] Jenkins, S.A., Humphreys, D.E., Sherman, J., Osse, J., Jones, C., Leonard, N., Graver, J., Bachmayer, R., Clem, T., Carroll, P. and Davis, P., 2003. Underwater glider system study.
11. [11] Graver, J.G., Bachmayer, R., Leonard, N.E. and Fratantoni, D.M., 2003, August. Underwater glider model parameter identification. In Proc. 13th Int. Symp. on Unmanned Untethered Submersible Technology (UUST) (Vol. 1, pp. 12-13).
12. [12] Zhang, F., Thon, J., Thon, C. and Tan, X., 2013. Miniature underwater glider: Design and experimental results. IEEE/ASME Transactions on Mechatronics, 19(1), pp.394-399. [
DOI:10.1109/TMECH.2013.2279033]
13. [13] Yang, C., Peng, S. and Fan, S., 2014. Performance and stability analysis for ZJU glider. Marine Technology Society Journal: The International, Interdisciplinary Society Devoted to Ocean and Marine Engineering, Science and PolicyM, 48(3), pp.88-103. [
DOI:10.4031/MTSJ.48.3.6]
14. [14] Jing, G., Lei, L. and Gang, Y., 2022. Dynamic modeling and experimental analysis of an underwater glider in the ocean. Applied Mathematical Modelling. [
DOI:10.1016/j.apm.2022.03.034]
15. [15] Lyu, D., Song, B., Pan, G., Yuan, Z. and Li, J., 2019. Winglet effect on hydrodynamic performance and trajectory of a blended-wing-body underwater glider. Ocean Engineering, 188, p.106303. [
DOI:10.1016/j.oceaneng.2019.106303]
16. [16] Magano, K., Meyers, L. and Msomi, V., 2021. Developments in the investigation of underwater glider wing profile. Materials Today: Proceedings. [
DOI:10.1016/j.matpr.2021.11.648]
17. [17] Yu, P., Wang, T., Zhou, H. and Shen, C., 2018. Dynamic modeling and three-dimensional motion simulation of a disk type underwater glider. International Journal of Naval Architecture and Ocean Engineering, 10(3), pp.318-328. [
DOI:10.1016/j.ijnaoe.2017.08.002]
18. [18] Nakamura, M., Hyodo, T. and Koterayama, W., 2007, July. "LUNA" testbed vehicle for virtual mooring. In The Seventeenth International Offshore and Polar Engineering Conference. OnePetro.
19. [19] Wu, H., Niu, W., Wang, S. and Yan, S., 2021. An analysis method and a compensation strategy of motion accuracy for underwater glider considering uncertain current. Ocean Engineering, 226, p.108877. [
DOI:10.1016/j.oceaneng.2021.108877]
20. [20] Lee, S., Choi, H.S., Kim, J.Y. and Paik, K.J., 2020. A numerical study on hydrodynamic maneuvering derivatives for heave-pitch coupling motion of a ray-type underwater glider. International Journal of Naval Architecture and Ocean Engineering, 12, pp.892-901. [
DOI:10.1016/j.ijnaoe.2020.10.002]
21. [21] Singh, Y., Bhattacharyya, S.K. and Idichandy, V.G., 2017. CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results. Journal of Ocean Engineering and Science, 2(2), pp.90-119. [
DOI:10.1016/j.joes.2017.03.003]
22. [22] Fossen, T.I., 2011. Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons. [
DOI:10.1002/9781119994138]
23. [23] J. Yuh. Modeling and control of underwater robot vehicles. In IEEE Transactions on Systems, Man and Cybernetics, volume 20, pages 1475-1483, 1990. [
DOI:10.1109/21.61218]
24. [24] Molland, A.F. and Turnock, S.R., 2011. Marine rudders and control surfaces: principles, data, design and applications. Elsevier.
25. [25] Seif, M.S. and Hasanvand, A., 2021. Investigating the geometry and control surface of AUV robots on hydrodynamics performance. Journal of Marine Engineering, 17(33), pp.53-64.
26. [26] Ortiz, X., Rival, D. and Wood, D., 2015. Forces and moments on flat plates of small aspect ratio with application to PV wind loads and small wind turbine blades. Energies, 8(4), pp.2438-2453. [
DOI:10.3390/en8042438]
27. [27] Hasanvand, A. and Hajivand, A., 2019. Investigating the effect of rudder profile on 6DOF ship turning performance. Applied Ocean Research, 92, p.101918. [
DOI:10.1016/j.apor.2019.101918]
28. [28] Hasanvand, A., Hajivand, A. and Ali, N.A., 2021. Investigating the effect of rudder profile on 6DOF ship course-changing performance. Applied Ocean Research, 117, p.102944. [
DOI:10.1016/j.apor.2021.102944]
29. [29] Prestero, T.T.J., 2001. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle (Doctoral dissertation, Massachusetts institute of technology). [
DOI:10.1575/1912/3040]
30. [30] Navabi M, Mirzaei H R. Dynamic Modeling and Nonlinear Adaptive Control of Mesicopter Flight. Modares Mechanical Engineering 2015; 15 (5) :1-12.
31. [31] mazare M, ghanbari P, kazemi M, Najafi M R. Dynamic Modeling and Optimal Adaptive Robust Control of an Omni Directional Mobile Robot Using Harmony Search Algorithm. Modares Mechanical Engineering 2017; 17 (8) :191-200.