1- Iran University of Science and Engineering
2- Iran University of Science and Engineering , rezvanabedini@iust.ac.ir
Abstract: (311 Views)
New surgical technologies are continuously being developed to enhance control during operations and mitigate injuries resulting from surgical procedures. One such advancement is the ultrasonic laparoscopic surgical tool known as the ultrasonic scalpel, which is designed to minimize surgery-related injuries when used alongside conventional tools. Establishing optimal input parameters for this ultrasonic instrument not only enhances operational reliability but also decreases the risk of resultant injuries. Ongoing research investigates the impact of varying power and duration of ultrasonic vibrations, along with the equivalent energy input into the blood vessel during surgery, on tissue mechanical characteristics and thermal effects. This study assesses the ability of sheep carotid artery tissues to withstand blood pressure within the vessel and examines thermal damage through pressure testing and optical imaging. Findings indicate that maintaining constant time at specific power yields maximum pressure tolerance at optimal power levels. However, varying the time at specific power settings produces different effects. For instance, the highest blood pressure resistance, at 1100 mmHg, was observed at 44 Watt of power over a 10 second duration at 10 newton. Furthermore, results demonstrate that increased energy input correlates with heightened thermal damage to surrounding tissues during the operation.
Article Type:
Original Research |
Subject:
Biomechanics Received: 2024/03/2 | Accepted: 2024/08/5 | Published: 2024/03/29