Volume 20, Issue 10 (October 2020)                   Modares Mechanical Engineering 2020, 20(10): 2559-2569 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ziya-Shamami M, Mirzababaie Mostofi T, Sayah Badkhor M, Babaei H. Free and Die Forming of Circular Metallic Plates Using Gas Mixture Detonation of O2 and C2H2: An Experimental Study. Modares Mechanical Engineering 2020; 20 (10) :2559-2569
URL: http://mme.modares.ac.ir/article-15-44669-en.html
1- Department of Mechanical Engineering, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
2- Department of Mechanical Engineering, Faculty of Electrical, Mechanical and Computer Engineering, University of Eyvanekey, Eyvanekey, Iran
3- Department of Mechanical Engineering, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran , ghbabaei@guilan.ac.ir
Abstract:   (1946 Views)
In the last decade, the gas mixture detonation forming (GDF) method has been introduced as a novel and alternative method instead of other high-velocity forming (HVF) methods such as explosive method. Due to the lack of research in this field, the present study investigates the free and die forming of circular metallic plates under gas mixture detonation loading. In this series of experiments, steel plates with thicknesses of 1, 2, and 3mm, aluminum plates with a thickness of 3mm, and brass plates with a thickness of 1mm were used. Furthermore, the test specimens were loaded in the impulse range of 4.12 to 54.68N·s. For better comparison, the same areal density condition was considered to compare the results of steel, aluminum, and brass plates under the same loading conditions. Experimental results showed that using a die with an apex angle of 60° leads to the decrease of the maximum permanent deflection by 14.8, 20.2, and 21.4% in 1, 2, and 3mm steel plates, respectively. Under the same loading and areal density conditions, for free forming, the use of aluminum and brass plates lead to increasing the maximum permanent deflection by 19.4 and 13.1% compared to the steel sample, respectively. However, in die forming, these values were 5 and 2%, respectively. Also, the comparison of the results for aluminum and brass plates shows that the using die forming reduces the maximum permanent deflection of the specimen by 12.1 and 10.6%.
Full-Text [PDF 1439 kb]   (1941 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2020/07/22 | Accepted: 2020/08/19 | Published: 2020/10/11

References
1. Mirzababaie Mostofi T, Babaei H, Alitavoli M. Theoretical analysis on the effect of uniform and localized impulsive loading on the dynamic plastic behaviour of fully clamped thin quadrangular plates. Thin-Walled Structures. 2016;109:367-376. [Link] [DOI:10.1016/j.tws.2016.10.009]
2. Jones N. Dynamic inelastic response of strain rate sensitive ductile plates due to large impact, dynamic pressure and explosive loadings. International Journal of Impact Engineering. 2014;74:3-15. [Link] [DOI:10.1016/j.ijimpeng.2013.05.003]
3. Mehreganian N, Louca LA, Langdon GS, Curry RJ, Abdul-Karim N. The response of mild steel and armour steel plates to localised air-blast loading-comparison of numerical modelling techniques. International Journal of Impact Engineering. 2018;115:81-93. [Link] [DOI:10.1016/j.ijimpeng.2018.01.010]
4. Rezasefat M, Mirzababaie Mostofi T, Ozbakkaloglu T. Repeated localized impulsive loading on monolithic and multi-layered metallic plates. Thin-Walled Structures. 2019;144:106332. [Link] [DOI:10.1016/j.tws.2019.106332]
5. Honda A, Suzuki M. Sheet metal forming by using gas imploding detonation. Journal of Materials Processing Technology. 1999;85(1-3):198-203. [Link] [DOI:10.1016/S0924-0136(98)00317-3]
6. Yasar M. Gas detonation forming process and modeling for efficient spring-back prediction. Journal of Materials Processing Technology. 2004;150(3):270-279. [Link] [DOI:10.1016/j.jmatprotec.2004.02.060]
7. Yaşar M, Demirci HI, Kadi I. Detonation forming of aluminium cylindrical cups experimental and theoretical modelling. Materials & Design. 2006;27(5):397-404. [Link] [DOI:10.1016/j.matdes.2004.11.005]
8. Kleiner M, Hermes M, Weber M, Olivier H, Gershteyn G, Bach FW, et al. Tube expansion by gas detonation. Production Engineering. 2007;1(1):9-17. [Link] [DOI:10.1007/s11740-007-0007-y]
9. Khaleghi Meybodi M, Bisadi H. Gas detonation forming by a mixture of H2+O2 detonation. World Academy of Science, Engineering and Technology. 2009;33:55-58. [Link]
10. Khaleghi Meybodi M, Aghazadeh BS, Bisadi H. Efficient oxyhydrogen mixture determination in gas Detonation forming. International Journal of Mechanical Engineering. 2013;7(8):1748-1754. [Link]
11. Babaei H, Mirzababaie Mostofi T, Sasdraei SH. Effect of gas detonation on response of circular plate-experimental and theoretical. Structural Engineering and Mechanics. 2015;56(4):535-548. [Link] [DOI:10.12989/sem.2015.56.4.535]
12. Babaei H, Mirzababaie Mostofi T, Alitavoli M, Darvizeh A. Empirical modelling for prediction of large deformation of clamped circular plates in gas detonation forming process. Experimental Techniques. 2016;40(6):1485-1494. [Link] [DOI:10.1007/s40799-016-0063-3]
13. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental investigation and analytical modelling for forming of circular-clamped plates by using gases mixture detonation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2020;234(5):1102-1111. [Link] [DOI:10.1177/0954406215614336]
14. Patil SP, Popli M, Jenkouk V, Markert B. Numerical modelling of the gas detonation process of sheet metal forming. Journal of Physics: Conference Series. 2016;734(3):0332099. [Link] [DOI:10.1088/1742-6596/734/3/032099]
15. Jenkouk V, Patil SP, Markert B. Joining of tubes by gas detonation forming. Journal of Physics: Conference Series. 2016;734(3):032101. [Link] [DOI:10.1088/1742-6596/734/3/032101]
16. Patil SP, Prajapati KG, Jenkouk V, Olivier H, Markert B. Experimental and numerical studies of sheet metal forming with damage using gas detonation process. Metals. 2017;7(12):556. [Link] [DOI:10.3390/met7120556]
17. Babaei H, Mirzababaie Mostofi T, Namdari-Khalilabad M, Alitavoli M, Mohammadi K. Gas mixture detonation method, a novel processing technique for metal powder compaction: Experimental investigation and empirical modeling. Powder Technology. 2017;315:171-181. [Link] [DOI:10.1016/j.powtec.2017.04.006]
18. Mirzababaie Mostofi T, Babaei H, Alitavoli M. The influence of gas mixture detonation loads on large plastic deformation of thin quadrangular plates: Experimental investigation and empirical modelling. Thin-Walled Structures. 2017;118:1-11. [Link] [DOI:10.1016/j.tws.2017.04.031]
19. Mirzababaie Mostofi T, Babaei H, Alitavoli M. Experimental and theoretical study on large ductile transverse deformations of rectangular plates subjected to shock load due to gas mixture detonation. Strain. 2017;53(4):12235. [Link] [DOI:10.1111/str.12235]
20. Mirzababaie Mostofi T, Babaei H, Alitavoli M, Lu G, Ruan D. Large transverse deformation of double-layered rectangular plates subjected to gas mixture detonation load. International Journal of Impact Engineering. 2019;125:93-106. [Link] [DOI:10.1016/j.ijimpeng.2018.11.005]
21. Aune V, Fagerholt E, Hauge KO, Langseth M, Børvik T. Experimental study on the response of thin aluminium and steel plates subjected to airblast loading. International Journal of Impact Engineering. 2016;90:106-121. [Link] [DOI:10.1016/j.ijimpeng.2015.11.017]
22. Aune V, Valsamos G, Casadei F, Langseth M, Børvik T. On the dynamic response of blast-loaded steel plates with and without pre-formed holes. International Journal of Impact Engineering. 2017;108:27-46. [Link] [DOI:10.1016/j.ijimpeng.2017.04.001]
23. Aune V, Valsamos G, Casadei F, Larcher M, Langseth M, Børvik T. Numerical study on the structural response of blast-loaded thin aluminium and steel plates. International Journal of Impact Engineering. 2017;99:131-144. [Link] [DOI:10.1016/j.ijimpeng.2016.08.010]
24. Zheng C, Kong XS, Wu WG, Xu SX, Guan ZW. Experimental and numerical studies on the dynamic response of steel plates subjected to confined blast loading. International Journal of Impact Engineering. 2018;113:144-160. [Link] [DOI:10.1016/j.ijimpeng.2017.11.013]
25. Mirzababaie Mostofi T, Sayah-Badkhor M, Rezasefat M, Ozbakkaloglu T, Babaei H. Gas mixture detonation load on polyurea-coated aluminum plates. Thin-Walled Structures. 2020;155:106851. [Link] [DOI:10.1016/j.tws.2020.106851]
26. Teeling-Smith RG, Nurick GN. The deformation and tearing of thin circular plates subjected to impulsive loads. International Journal of Impact Engineering. 1991;11(1):77-91. [Link] [DOI:10.1016/0734-743X(91)90032-B]
27. Henchie TF, Yuen SCK, Nurick GN, Ranwaha N, Balden VH. The response of circular plates to repeated uniform blast loads: An experimental and numerical study. International Journal of Impact Engineering. 2014;74:36-45. [Link] [DOI:10.1016/j.ijimpeng.2014.02.021]
28. Spranghers K, Vasilakos I, Lecompte D, Sol H, Vantomme J. Numerical simulation and experimental validation of the dynamic response of aluminum plates under free air explosions. International Journal of Impact Engineering. 2013;54:83-95. [Link] [DOI:10.1016/j.ijimpeng.2012.10.014]
29. Rajendran R, Lee JM. Blast loaded plates. Marine Structures. 2009;22(2):99-127. [Link] [DOI:10.1016/j.marstruc.2008.04.001]
30. Rudrapatna NS, Vaziri R, Olson MD. Deformation and failure of blast-loaded square plates. International Journal of Impact Engineering. 1999;22(4):449-467. [Link] [DOI:10.1016/S0734-743X(98)00046-3]
31. Jones N. Structural impact. Cambridge: Cambridge university press; 1997. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.