1. Florence AL, Ahrens TJ. Interaction of projectiles and composite armor. Fort Belvoir: Defense Technical Information Center; 1967. [
Link] [
DOI:10.21236/AD0652726]
2. Tate A. A theory for the deceleration of long rods after impact. Journal of the Mechanics and Physics of Solids. 1967;15(6):387-399. [
Link] [
DOI:10.1016/0022-5096(67)90010-5]
3. Wilkins ML. Mechanics of penetration and perforation. International Journal of Engineering Science. 1978;16(11):793-807. [
Link] [
DOI:10.1016/0020-7225(78)90066-6]
4. Backman ME, Goldsmith W. The mechanics of penetration of projectiles into targets. International Journal of Engineering Science. 1978;16(1):1-99. [
Link] [
DOI:10.1016/0020-7225(78)90002-2]
5. Rozenberg Z, Yeshurun Y. The relation between ballastic efficiency and compressive strength of ceramic tiles. International Journal of Impact Engineering. 1988;7(3):357-362. [
Link] [
DOI:10.1016/0734-743X(88)90035-8]
6. Woodward RL. A simple one-dimensional approach to modelling ceramic composite armour defeat. International Journal of Impact Engineering. 1990;9(4):455-474. [
Link] [
DOI:10.1016/0734-743X(90)90035-T]
7. Den Reijer PC. Impact on ceramic faced armour [Dissertation]. Delft: Delft University of Technology; 1991. [
Link]
8. Zaera R, Sanchez-Galvez V. Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours. International Journal of Impact Engineering. 1998;21(3):133-148. [
Link] [
DOI:10.1016/S0734-743X(97)00035-3]
9. Chocron Benloulo IS, Sanchez-Galvez V. A new analytical model to simulate impact onto ceramic/composite armors. International Journal of Impact Engineering. 1998;21(6):461-471. [
Link] [
DOI:10.1016/S0734-743X(98)00006-2]
10. Fellows NA, Barton PC. Development of impact model for ceramic-faced semi-infinite armour. International Journal of Impact Engineering. 1999;22(8):793-811. [
Link] [
DOI:10.1016/S0734-743X(99)00017-2]
11. Zaera R, Sánchez-Sáez S, Pérez-Castellanos JL, Navarro C. Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact. Composites Part A: Applied Science and Manufacturing. 2000;31(8):823-833. [
Link] [
DOI:10.1016/S1359-835X(00)00027-0]
12. Wen HM. Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes. Composite Structures. 2000;49(3):321-329. [
Link] [
DOI:10.1016/S0263-8223(00)00064-7]
13. Shokrieh MM, Javadpour GH. Penetration analysis of a projectile in ceramic composite armor. Composite Structures. 2008;82(2):269-276. [
Link] [
DOI:10.1016/j.compstruct.2007.01.023]
14. Arias A, Rodríguez-Martínez JA, Rusinek A. Numerical simulations of impact behaviour of thin steel plates subjected to cylindrical, conical and hemispherical non-deformable projectiles. Engineering Fracture Mechanics. 2008;75(6):1635-1656. [
Link] [
DOI:10.1016/j.engfracmech.2007.06.005]
15. Babaei B, Shokrieh MM, Daneshjou K. The ballistic resistance of multi-layered targets impacted by rigid projectiles. Materials Science and Engineering: A. 2011;530:208-217. [
Link] [
DOI:10.1016/j.msea.2011.09.076]
16. Rodríguez-Millán M, Vaz-Romero A, Rusinek A, Rodríguez-Martínez JA, Arias A. Experimental study on the perforation process of 5754-H111 and 6082-T6 aluminium plates subjected to normal impact by conical, hemispherical and blunt projectiles. Experimental Mechanics. 2014;54(5):729-742. [
Link] [
DOI:10.1007/s11340-013-9829-z]
17. Yunfei D, Wei Z, Yonggang Y, Lizhong Sh, Gang W. Experimental investigation on the ballistic performance of double-layered plates subjected to impact by projectile of high strength. International Journal of Impact Engineering. 2014;70:38-49. [
Link] [
DOI:10.1016/j.ijimpeng.2014.03.003]
18. Mehrabani Yeganeh E, Liaghat GH, Pol MH. Experimental investigation of cylindrical projectiles nose shape effects on high velocity perforation of woven polymer composite. Modares Mechanical Engineering. 2015;14(14):309-318. [Persian] [
Link]
19. Venkatesan J, Iqbal MA, Madhu V. Ballistic performance of bilayer alumina/aluminium and silicon carbide/aluminium armours. Procedia Engineering. 2017;173:671-678. [
Link] [
DOI:10.1016/j.proeng.2016.12.141]
20. Ekrami M, Ahmadi H, Bayat M, Sabouri H. Experimental study of projectiles with flat, conical and hemispherical nose shapes on low velocity impact on GLARE 3. Modares Mechanical Engineering. 2017;17(7):109-118. [Persian] [
Link]
21. Mirzababaie Mostofi T, Babaei H, Alitavoli M, Hosseinzadeh S. On dimensionless numbers for predicting large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2017;112:118-124. [
Link] [
DOI:10.1016/j.tws.2016.12.014]
22. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental and analytical investigation into large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2016;107:257-265. [
Link] [
DOI:10.1016/j.tws.2016.06.013]
23. Itagaki Y, Tamura H, Watanabe Y, Taniyama K, Takashima A. Effects of head shape of projectiles on hypervelocity impact cratering on aluminum 5052 alloy targets at 7 km/s. International Journal of Impact Engineering. 2019;123:38-47. [
Link] [
DOI:10.1016/j.ijimpeng.2018.09.017]
24. Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. 7th International Symposium on Ballistics, 1983 April 19-21, the Hague, the Netherlands. Unknown Publisher; 1983. pp. 541-547. [
Link]
25. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985;21(1):31-48. [
Link] [
DOI:10.1016/0013-7944(85)90052-9]
26. Alipour R, Najarian F. A FEM study of explosive welding of double layer tubes. International Journal of Mechanical and Mechatronics Engineering. 2011;5(1):183-185. [
Link]
27. Holmquist TJ, Templeton DW, Bishnoi KD. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications. International Journal of Impact Engineering. 2001;25(3):211-231. [
Link] [
DOI:10.1016/S0734-743X(00)00046-4]
28. Cronin DS, Bui K, Kaufmann Ch, McIntosh G, Berstad T, Cronin D. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-Dyna. 4th European LS-DYNA Users Conference, 2003 May 22-23, ULM, Germany. Unknown City: European LS-DYNA; 2003. [
Link]
29. Yazdani M, Rashed A. Studying the performance of multi-layered ceramic-epoxy armor under high velocity impact with finite element method. Modares Mechanical Engineering. 2015;15(1):11-20. [Persian] [
Link]