Volume 20, Issue 6 (June 2020)                   Modares Mechanical Engineering 2020, 20(6): 1475-1485 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nikmehr M, Kalantar V, Sefid M. Thermal Performance of Hydrophobic Vapor Chamber and the Influence of Different Parameters on It. Modares Mechanical Engineering 2020; 20 (6) :1475-1485
URL: http://mme.modares.ac.ir/article-15-37627-en.html
1- Mechanical Engineering Department, Engineering Faculty, Yazd University, Yazd, Iran
2- Mechanical Engineering Department, Engineering Faculty, Yazd University, Yazd, Iran , vkalantar@yazd.ac.ir
Abstract:   (3323 Views)
Using vapor chambers is a useful way to control the temperature of electronic components. In this study, two vapor chambers with identical dimensions have been tested. The condensation part of one of them is hydrophobic, the second is simple and there is no hydrophobic operation. In this study, the effect of lateral surface insulation on both vapor chambers, the effect of other parameters, including vapor chamber angle with the horizon, different heat loads produced by the heat source (printed circuit board), geometric deformation of the heat source in a fixed area, and also, change the location of the heat source installation on the evaporator floor, on the thermal performance of the vapor chamber, due to the hydrophobicity of the condensation part of the vapor chamber, has been studied as experimental work and compared with the simple vapor chamber. Also, the impact of installing the heat source on the entire floor of the evaporation section, by increasing the area of it, in both vapor chambers have been investigated. Experimental results show that hydrophobicity and increase of heat, in total and in most cases, decrease the thermal resistance of the vapor chamber. The thermal performance of the vapor chamber has also been improved by installing the printed circuit board across the evaporator floor and it depends on other parameters investigated in this study. Also, insulating the side surfaces, increases the thermal resistance in the simple vapor chamber and reduces thermal resistance in the vapor chamber with the hydrophobic condensation section.
Full-Text [PDF 1220 kb]   (2086 Downloads)    
Article Type: Original Research | Subject: Heat & Mass Transfer
Received: 2019/10/22 | Accepted: 2019/12/23 | Published: 2020/06/20

References
1. Haghayegh Sh, Saidi MH, Afshin H, Shafii MB, Adibnia A. Effect of evaporator's length on pulsating heat pipes thermal performance. Modares Mechanical Engineering. 2014;13(15):110-115. Persian. [Link]
2. Reyes M, Alonso D, Arias JR, Velazquez A. Experimental and theoretical study of a vapour chamber based heat spreader for avionics applications. Applied Thermal Engineering. 2012;37:51-59. [Link] [DOI:10.1016/j.applthermaleng.2011.12.050]
3. Naphon P, Wongwises S, Wiriyasart S. Application of two-phase vapor chamber technique for hard disk drive cooling of PCs. International Communications in Heat and Mass Transfer. 2013;40:32-35. [Link] [DOI:10.1016/j.icheatmasstransfer.2012.10.014]
4. Wong SC, Hsieh KC, Wu JD, Han WL. A novel vapor chamber and its performance. International Journal of Heat and Mass Transfer. 2010;53(11-12):2377-2384. [Link] [DOI:10.1016/j.ijheatmasstransfer.2010.02.001]
5. Zeng J, Zhang Sh, Chen G, Lin L, Sun Y, Chuai L, et al. Experimental investigation on thermal performance of aluminum vapor chamber using micro-grooved wick with reentrant cavity array. Applied Thermal Engineering. 2018;130:185-194. [Link] [DOI:10.1016/j.applthermaleng.2017.11.031]
6. Chen YT, Kang SW, Hung YH, Huang CH, Chien KC. Feasibility study of an aluminum vapor chamber with radial grooved and sintered powders wick structures. Applied Thermal Engineering. 2013;51(1-2):864-870. [Link] [DOI:10.1016/j.applthermaleng.2012.10.035]
7. Shojaeefard MH, Khalkhali A, Zare j, Tahani M. Multi objective optimazation of heat pipe thermal performance while using aluminium oxide nanofluid. Modares Mechanical Engineering. 2014;14(1):158-167. Persian. [Link]
8. Tsai MC, Kang SW, Paiva KV. Experimental studies of thermal resistance in a vapor chamber heat spreader. Applied Thermal Engineering. 2013;56(1-2):38-44. [Link] [DOI:10.1016/j.applthermaleng.2013.02.034]
9. Yao F, Miao S, Zhang M, Chen Y. An experimental study of an anti-gravity vapor chamber with a tree-shaped evaporator. Applied Thermal Engineering. 2018;141:1000-1008. [Link] [DOI:10.1016/j.applthermaleng.2018.06.053]
10. Peng H, Ling X. Experimental investigation on flow and heat transfer performance of a novel heat fin-plate radiator for electronic cooling. Heat and Mass Transfer. 2009;45:1575-1581. [Link] [DOI:10.1007/s00231-009-0532-7]
11. Mizuta K, Fukunaga R, Fukuda K, Nii S, Tanemasa Asano T. Development and characterization of a flat laminate vapor chamber. Applied Thermal Engineering. 2016;104:461-471. [Link] [DOI:10.1016/j.applthermaleng.2016.05.080]
12. Sayyahi M, Mamourian M, Ghadiri M. Exprimental Investigation of the influence of nanofluid on the heat performance of pulsating heat pipe. Modares Mechanical Engineering. 2016;16(13):162-165. Persian. [Link]
13. Tsai TE, Wu HH, Chang CC, Chen SL. Two-phase closed thermosyphon vapor-chamber system for electronic cooling. International Communications in Heat and Mass Transfer. 2010;37(5):484-489. [Link] [DOI:10.1016/j.icheatmasstransfer.2010.01.010]
14. Ji X, Xu J, Abanda AM, Xue Q. A vapor chamber using extended condenser concept for ultra-high heat flux and large heater area. International Journal of Heat and Mass Transfer. 2012;55(17-18):4908-4913. [Link] [DOI:10.1016/j.ijheatmasstransfer.2012.04.018]
15. Lu L , Xie Y, Zhang F, Liao H, Liu X, Yong Tang. Influence of a sintered central column on the thermal hydraulic performance of a vapor chamber: A numerical analysis. Applied Thermal Engineering. 2016;103:1176-1185. [Link] [DOI:10.1016/j.applthermaleng.2016.05.018]
16. Liu W, Gou J, Luo Y, Zhang M. The experimental investigation of a vapor chamber with compound columns under the influence of gravity. Applied Thermal Engineering. 2018;140:131-138. [Link] [DOI:10.1016/j.applthermaleng.2018.05.010]
17. Li Y, Li Z, Zhou W, Zeng Z, Yan Y, Li B. Experimental investigation of vapor chambers with different wick structures at various parameters. Experimental Thermal and Fluid Science. 2016;77:132-143. [Link] [DOI:10.1016/j.expthermflusci.2016.04.017]
18. Cao Y, Cao M. Wickless network heat pipes for high heat flux spreading applications. International Journal of Heat and Mass Transfer. 2002;45(12):2539-2547. [Link] [DOI:10.1016/S0017-9310(01)00338-6]
19. Lips S, Lefèvre F, Bonjour J. Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe. International Journal of Heat Mass Transfer. 2010;53(4):694-702. [Link] [DOI:10.1016/j.ijheatmasstransfer.2009.10.022]
20. Srimuang W, Limkaisang V. A correlation to predict the heat flux on the air-side of a vapor chamber with overturn-U flattened tubes. Heat Mass Transfer. 2016;52:1683-1692. [Link] [DOI:10.1007/s00231-015-1690-4]
21. Tang Y, Yuan D, Lu L, Wang Z. A multi-artery vapor chamber and its performance. Applied Thermal Engineering. 2013;60(1-2):15-23. [Link] [DOI:10.1016/j.applthermaleng.2013.06.014]
22. Parale VG, Mahadik DB, Phadtare VD, Pisal AA, Park HH, Wategaonkar SB. Dip coated superhydrophobic and anticorrosive silica coatings. International Journal of Materials Science and Engineering.2016;4(1):60-67. [Link]
23. Nikmehr M, Kalantar V. Experimental investigation of the effect of different parameters on the thermal performance of the vapor chamber for cooling the electronic board. Modares Mechanical Engineering. 2019;19(10):2387-2395. Persian. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.