دوره ۲۲، شماره ۵ - ( اردیبهشت ۱۴۰۱ )                   جلد ۲۲ شماره ۵ صفحات ۳۰۲-۲۹۱ | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taheri-Behrooz F, Torabi M. Residual Strength prediction of the Carbon/Epoxy plates under Low-Velocity Impact. Modares Mechanical Engineering 2022; 22 (5) :291-302
URL: http://mme.modares.ac.ir/article-15-57394-fa.html
طاهری بهروز فتح اله، ترابی مهدی. پیش بینی استحکام باقی مانده صفحات کربن / اپوکسی تحت ضربه کم سرعت. مهندسی مکانیک مدرس. ۱۴۰۱; ۲۲ (۵) :۲۹۱-۳۰۲

URL: http://mme.modares.ac.ir/article-۱۵-۵۷۳۹۴-fa.html


۱- دانشگاه علم و صنعت ایران ، taheri@iust.ac.ir
۲- دانشگاه علم و صنعت ایران
چکیده:   (۲۸۴۹ مشاهده)
در این پژوهش استحکام باقی مانده صفحات کامپوزیتی از جنس کربن / اپوکسی در برابر ضربه کم سرعت و تحت تاثیر چرخه حرارتی با استفاده از روش تجربی بررسی شده­است. صفحات کامپوزیتی با لایه چینی [45/02/-45/902]s و ضخامت حدود 9/2 میلیمتر در سه سطح انرژی 10، 15 و 20 ژول و تحت 200  چرخه حرارتی در بازه دمایی 30- تا 65 درجه سانتیگراد تحت ضربه کم سرعت و آزمون استحکام فشاری قرار گرفته­اند. در انجام آزمون­های ضربه از دستگاه آزمون وزنه افتان استفاده شده­است. برای بررسی رفتار کامپوزیت­های آسیب دیده، منحنی­های نیرو-زمان، نیرو-جابجایی و انرژی –زمان مورد تحلیل و بررسی قرار گرفته­اند. ارزیابی اثر چرخه حرارتی و آسیب­های بوجود آمده در سطوح مختلف انرژی ضربه، با انجام تحلیل­های رادیوگرافی و میکروسکوپ نوری تکمیل شده­است. نتایج نشان دادند اعمال 200 چرخه حرارتی در بازه دمایی 30- تا 65 درجه سانتیگراد باعث ایجاد ترک­های ریز در ماتریس شده و جذب انرژی در نمونه­ها کاهش یافته ­است. بیشترین افت استحکام فشاری به میزان 12/31 درصد و مربوط به انرژی ضربه 20‌ ژول است. چرخه حرارتی در سطوح مختلف انرژی ضربه 10، 15 و 20 ژول با تکمیل فرآیند پخت کامپوزیت­ها باعث افزایش سفتی و استحکام باقی مانده فشاری نمونه­های کامپوزیتی شده­است. نهایتا پارمترهای مادی مدل نیمه تجربی کاپرینو، برای تخمین استحکام باقی مانده فشاری نمونه­های کامپوزیتی تحت چرخه حرارتی و ضربه کم سرعت استخراج شده است.
متن کامل [PDF 983 kb]   (۱۶۱۲ دریافت)    
نوع مقاله: پژوهشی اصیل | موضوع مقاله: سازه های هوا فضا
دریافت: 1400/9/4 | پذیرش: 1400/9/26 | انتشار: 1401/2/10

فهرست منابع
1. I. Taraghi, A. Fereidoon, F. Taheri-Behrooz. Low-velocity impact response of woven kevlar/epoxy laminated composites reinforced with multi-walled carbon Nanotubes at Ambient and Low Temperature. Materials and Design. 2014; 53: 152-158. [DOI:10.1016/j.matdes.2013.06.051]
2. J. Körbelin, C. Dreiner, B. Fiedler. Impact of temperature on LVI damage and tensile and compressive residual strength of CFRP. Composites Part C. 2020;. 3: 100074. [DOI:10.1016/j.jcomc.2020.100074]
3. L. Papa, A. Langella, V. Lopresto. CFRP laminates under low‐velocity impact conditions: Influence of matrix and temperature. Polymer Engineering & Science. 2019; 52(12): 2429-2437. [DOI:10.1002/pen.25102]
4. R. Ghajar, A. Rassaf. Effect of impactor shape and temperature on the behavior of E-glass/epoxy composite laminates. Modares Mechanical Engineering. 2014; 14(10):1-8. (In Persian)
5. D. Kevin, PW. Cowley, R. Beaumont. The inter laminar fracture toughness of carbon-fiber/polymer composites: The effect of temperature. Composites science and technology. 1997; 57: 1433-1444. [DOI:10.1016/S0266-3538(97)00047-X]
6. HS. Kim, WX. Wang, Y. Takao. Effects of temperature and stacking sequence on the mode I inter laminar fracture behavior of composite laminates. Key Engineering Materials. 2000; 183: 815-820. [DOI:10.4028/www.scientific.net/KEM.183-187.815]
7. D. Wang, X. Zhou, H.Ge, Z. Liu, H. Liu,K. Sun. The influence of thermal fatigue on the properties of glass fiber/epoxy composites. Polymers & Polymer Composites. 2012; 20: 129-132. [DOI:10.1177/0967391112020001-225]
8. S. Abrate. Impact engineering of composite structures. Springer Science & Business Media. 2011; 526. [DOI:10.1007/978-3-7091-0523-8]
9. M. Richardson, MJ. Wisheart. Review of low-velocity impact properties of composite materials. Composites. Part A: Applied Science and Manufacturing. 1996; 27(12): 1123-1131. [DOI:10.1016/1359-835X(96)00074-7]
10. D. Petersen, R. Rolfes, R. Zimmermann. Thermo-mechanical design aspects for primary composite structures of large transport aircraft. Aerospace Science Technology. 2001; 5(2): 135-146. [DOI:10.1016/S1270-9638(00)01089-0]
11. M C. Lafarie-Frenot, S. Rouquie, N Q. Ho, V. Bellenger. Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling. Composites Part A: Applied Science and Manufacturing. 2006; 37(4): 662-671. [DOI:10.1016/j.compositesa.2005.05.002]
12. D. Ghelli, V. Cantarini, E. Troiani. Influence of thermal cycling on the low velocity Impact response of CFRP laminate. 〖16〗^TH European Conference On Composite Materials. 2014; Seville-Spain.
13. H. Ghasemi, R. Baghersad. Analytical and experimental study of nonlinear behavior and failure coefficient of composite multilayers due to cyclic thermal loading, Iranian Journal of Aviation Engineering. 2012; 14(2): 11-16. (In Persian)
14. I. Moreno, M. Caminero, GP. Rodriguez, JJ. Lopez-Cela. Effect of themal ageing on the impact and flexural damage behaviour of carbon fibre-reinforced epoxy laminate. Polymers. 2019; 11(1): 80-91. [DOI:10.3390/polym11010080]
15. J.Weng, W. Wen, H. Zhang. Study on low velocity impact and residual strength at high temperatures of composite laminates. Aerospace Engineering. 2019; 233(3): 1106-1123. [DOI:10.1177/0954410017748184]
16. C. Soutis, D. Turkmen. Moisture and temperature effects of the compressive failure of CFRP unidirectional laminates, Journal of Composite Materials. 1997; 31: 832-849. [DOI:10.1177/002199839703100805]
17. K. Terada, S. Kobayashi, N. Takeda. Experimental characterization of microscopic damage progress in AS4/PEEK cross-ply laminates under thermal cycling. Advanced Composite Materials. 2000; 9(4): 335-348. [DOI:10.1163/15685510052000147]
18. AR. Ghasemi, H. Khabaz Kashani. Analysis of circular hole and thermal cycle effects on the mechanical properties in multi-layer polymer composite reinforced with nanoparticles. Modares Mechanical Engineering. 2019; 19(1): 229-236. (In Persian)
19. Lazar M. Kachanov. Rupture time under creep conditions. Izvestia Akademii Navsk SSSR.Odtelemie Tekhniheskikh Nauk. 1958; l.8:.26-31.
20. Y. Rabotnov. Creep rupture in Proceedings. the12th International Congress of Applied Mechanics. 1968; 1: 342-349. [DOI:10.1007/978-3-642-85640-2_26]
21. Hai-Po. Cui, Wen. Wei-Dong, Cui. Hai-Tao. An integrated method for predicting damage and residual tensile strength of composite laminates under low velocity impact. Computers & structures. 2009; 87(7-8): 456-466. [DOI:10.1016/j.compstruc.2009.01.006]
22. K. Amirashjaee, S. Fakhreddini-Najafabadi, F. Taheri-Behrooz. Numerical and experimental study of carbon/epoxy composite laminate response to low velocity impact. Journal of Science and Technology of Composites. 2021; 8(1): 1461-1472. (In Persian)
23. G. Caprino. On the prediction of residual strength for notched laminates. Journal of materials science. 1983; 18(8): 2269-2273. [DOI:10.1007/BF00541829]
24. Sarma. Avva V, HL. Padmanabha. Compressive Residual Strength Prediction in Fiber-Reinforced Laminated Composites Subjected To Impact Loads. Fracture 84 Pergamon. 1984; 1:2897-2907. [DOI:10.1016/B978-1-4832-8440-8.50307-0]
25. SIKAWRAP. SikaWrap ® -230 C. WOVEN UNIDIRECTIONAL CARBON FIBRE FABRIC. 2017; 1-4.
26. HEXIONTM. EPIKOTE TM. Resin L20 and EPIKURETM Curing Agent 960 data sheet. 2004; pp.1-4.
27. ASTM International. D7136/D7136M - 15. Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. Am Stand Test Methods. 2011; 4-6.
28. ASTM International. D7137/D7137M-17. Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. Am Stand Test Methods. 2012; 1-17.
29. H. Tuo, Z. Lu, X. Ma, C. Zhang, S. Chen. An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates. Compos Part B Eng. 2019; 167: 329-41. [DOI:10.1016/j.compositesb.2018.12.043]
30. D. Wang, X. Zhou, H. Ge,Z. Liu, H. Liu,K. Sun. The influence of thermal fatigue on the properties of glass fiber/epoxy composites, Polymers & Polymer Composites. 2012; 20(1- 2): 129-132. [DOI:10.1177/0967391112020001-225]
31. MA. Caminero, I. García-Moreno,GP. Rodríguez. Experimental study of the influence of thickness and ply-stacking sequence on the compression after impact strength of carbon fiber reinforced epoxy laminates. Polymer Test. 2018; 66: 360-370. [DOI:10.1016/j.polymertesting.2018.02.009]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.