مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل عملکرد و بهینه‌سازی سیستم سه‌هدفه با استفاده از مفاهیم ترمودینامیک زمان محدود

نویسندگان
1 دانشگاه سیستان و بلوچستان و استاد دانشگاه چمران کرمان
2 دانشگاه سیستان وبلوچستان
3 دانشگاه سیستان و بلوچستان
چکیده
در این مقاله، به تحلیل عملکرد و بهینه‌ سازی یک سیستم سه‌هدفه بر‌اساس معیارهای متفاوت ترمودینامیکی مانند بازده انرژی و اگزرژی، توان و توان بی‌بعد پرداخته شده است. سیستم سه‌هدفه از سه زیرسیستم تشکیل ‌شده است که شامل زیرسیستم خورشیدی، زیرسیستم کالینا و زیرسیستم چیلر جذبی لیتیم برمید - آب است. هدف این سیستم تولید توان، آب گرم خانگی و سرمایش با استفاده از انرژی خورشید است. توان بی‌بعد، به ‌عنوان یک ابزار برای درک مفاهیم ترمودینامیک زمان محدود معرفی ‌شده است. توان بی‌بعد به‌ صورت نسبت توان به حاصل‌ضرب هدایت حرارتی کل در دمای کمینه سیکل خورشیدی تعریف ‌شده است. تحلیل اگزرژی نشان داده است که بیشترین اگزرژی تخریب‌شده مربوط به بویلر است. نتایج نشان داده است که در طراحی اولیه بازده انرژی، بازده اگزرژی، نرخ هزینه سرمایه‌گذاری کل و توان بی‌بعد به ترتیب برابر است با%37/17، %82/18، 63/9 دلار بر ساعت و 01781/0. تحلیل حساسیت نشان داده است که افزایش پارامترهایی مانند دمای محیط، تابش خورشیدی، دمای ورودی کلکتور و نسبت فشار سیکل کالینا باعث افزایش بازده انرژی و اگزرژی شده است. همچنین افزایش نسبت فشار سیکل کالینا، کاهش دبی جرمی سیکل کالینا، دمای محیط و دمای ورودی کلکتور باعث افزایش توان بی‌بعد شده است. علاوه بر این به مقایسه معیارهای بهینه‌ سازی مانند بازده انرژی، بازده اگزرژی، توان و توان بی‌بعد پرداخته شده است. نتایج نشان داده است که توان و توان بی‌بعد بهترین معیار بهینه‌ سازی ترمودینامیکی هستند.
کلیدواژه‌ها

عنوان مقاله English

Performance analysis and optimization Tri-Generation system using Finite-Time Thermodynamics concepts

نویسندگان English

Amir Ghasemkhani 1
Said Farahat 2
Mohammad Mahdi Naserian 3
1 Department of Mechanical Engineering, Faculty of Engineering, University of Sistan and Bluchestan, Zahedan, Iran
2 Mechanical Engineering DepartmentUniversity of Sistan and Baluchestan987-98155, Zahedan, Iran.
3 Department of Mechanical Engineering, Faculty of Engineering, University of Sistan and Bluchestan, Zahedan, Iran
چکیده English

In this paper, performance analysis and optimization of a trigeneration system based on different thermodynamic criteria such as energy and exergy efficiency, power and dimensionless power have been investigated. The trigeneration system consists of three subsystems which including the solar subsystem, Kalina subsystem and lithium bromide-water absorption chiller subsystem. The proposed system uses solar energy generates power, cooling and domestic water heating. Power is introduced as a tool for understanding thermodynamic concepts of limited time. Dimensionless power is defined as the ratio of power to the product of total thermal conductivity and minimum temperature of the system. Dimensionless power can be used as a tool to understand the concepts of finite time thermodynamics. The exergy analysis has shown that the most exergy destruction is related to boiler. As a result, energy and exergy efficiencies, capital cost rates and dimensionless power are 17.77%, 18.82% and 9.63 dollars per hour, 0.01781 respectively. Sensitivity analysis has shown that increasing parameters such as ambient temperature, solar radiation, the dimensionless mass flow rate of the Kalina cycle, collector inlet temperature and pressure ratio of the Kalina cycle increase energy and exergy efficiencies. Also increasing pressure ratio the of Kalina Cycle, reducing the dimensionless mass flow rate of the Kalina cycle, the ambient temperature and collector inlet temperature has led to increased dimensional power. In addition, the optimization criteria such as energy efficiency, exergy efficiency, power and dimensional power have been compared. The results showed that power and dimensional power are the best thermodynamic optimization criteria.

کلیدواژه‌ها English

Exergy analysis
Kalina cycle
Finite-Time Thermodynamics
[1] S. Teske, S. Sawyer, O. Schäfer, T. Pregger, S. Simon, T. Naegler, S. Schmid, E. D. Özdemir, J. Pagenkopf, F. Kleiner, Energy
[r] Evolution-a Sustainable World Energy Outlook 2015, 5th Edition, pp. 62-100 Belgium: Greenpeace International, 2015.
[2] S. Teske, T. Pregger, S. Simon, T. Naegler, W. Graus, C. Lins, Energy
[R]evolution 2010—a sustainable world energy outlook, Energy Efficiency, Vol. 4, No. 3, pp. 409-433, 2011.
[3] D. Y. Goswami, Alternative Energy in Agriculture, pp. 36-57, Boca Raton: CRC Press, 1986.
[4] O. Erdinc, M. Uzunoglu, Optimum design of hybrid renewable energy systems: Overview of different approaches, Renewable and Sustainable Energy Reviews, Vol. 16, No. 3, pp. 1412-1425, 2012.
[5] M. Pavlas, P. Stehlík, J. Oral, J. Šikula, Integrating renewable sources of energy into an existing combined heat and power system, Energy, Vol. 31, No. 13, pp. 2499-2511, 2006.
[6] I. Dincer, S. Dost, X. Li, Performance analyses of sensible heat storage systems for thermal applications, International Journal of Energy Research, Vol. 21, No. 12, pp. 1157-1171, 1997.
[7] P. Ahmadi, I. Dincer, M. A. Rosen, Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration, Energy Conversion and Management, Vol. 64, No. Supplement C, pp. 447-453, 2012.
[8] M. Maerefat, P. Shafie, Design of CCHP system for office buildings in Tehran and thermodynamical,environmental and economical evaluation in comparison to conventional system, Modares Mechanical Engineering, Vol. 14, No. 6, pp. 124-134, 2014. (In Persian فارسی(
[9] P. Ahmadi, I. Dincer, Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA), Energy, Vol. 35, No. 12, pp. 5161-5172, 2010.
[10] A. Khaliq, Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration, International Journal of Refrigeration, Vol. 32, No. 3, pp. 534-545, 2009.
[11] P. Ahmadi, M. A. Rosen, I. Dincer, Greenhouse gas emission and exergoenvironmental analyses of a trigeneration energy system, International Journal of Greenhouse Gas Control, Vol. 5, No. 6, pp. 1540-1549, 2011.
[12]C. H. Marston, Parametric analysis of the Kalina cycle, Journal of Engineering for Gas Turbines and Power, Vol. 112, No. 1, pp. 107-116, 1990.
[13] G. Wall, C. C. Chuang, M. Ishida, Exergy study of the Kalina cycle, Analysis and Design of Energy Systems: Analysis of Industrial Processes, Vol. 10, No. 3, pp. 73-77, 1989.
[14]J. Wang, Z. Yan, E. Zhou, Y. Dai, Parametric analysis and optimization of a Kalina cycle driven by solar energy, Applied Thermal Engineering, Vol. 50, No. 1, pp. 408-415, 2013.
[15] H. Chua, H. Toh, K. Ng, Thermodynamic modeling of an ammonia–water absorption chiller, International Journal of Refrigeration, Vol. 25, No. 7, pp. 896-906, 2002.
[16]L. Garousi Farshi, S. M. S. Mahmoudi, M. A. Rosen, M. Yari, M. Amidpour, Exergoeconomic analysis of double effect absorption refrigeration systems, Energy Conversion and Management, Vol. 65, No. Supplement C, pp. 13-25, 2013.
[17]I. Novikov, Efficiency of an atomic power generating installation, Atomic Energy, Vol. 3, No. 5, pp. 1269-1272, 1957.
[18] A. Ghasemkhani, S. Farahat, M. M. Naserian, Evaluation combined cycle irreversible on the criteria of maximum power in finite time thermodynamics, Modares Mechanical Engineering, Vol. 17, No. 11, pp. 333-342, 2018. (In (فارسی Persian
[19] S. Ozlu, I. Dincer, Development and analysis of a solar and wind energy based multigeneration system, Solar Energy, Vol. 122, No. Supplement C, pp. 1279-1295, 2015.
[20] S. Ozlu, I. Dincer, Analysis and evaluation of a new solar energy‐based multigeneration system, International Journal of Energy Research, Vol. 40, No. 10, pp. 1339-1354, 2016.
[21] A. Bejan, Advanced Engineering Thermodynamics, pp. 69-72, New York: John Wiley & Sons, 2016.
[22] S. Farahat, F. Sarhaddi, H. Ajam, Exergetic optimization of flat plate solar collectors, Renewable Energy, Vol. 34, No. 4, pp. 1169-1174, 2009.
[23] A. A. A. Abuelnuor, K. M. Saqr, S. A. A. Mohieldein, K. A. Dafallah, M. M. Abdullah, Y. A. M. Nogoud, Exergy analysis of Garri “2” 180MW combined cycle power plant, Renewable and Sustainable Energy Reviews, Vol. 79, No. Supplement C, pp. 960-969, 2017.
[24] S. A. Kalogirou, Parabolic trough collectors for industrial process heat in Cyprus, Energy, Vol. 27, No. 9, pp. 813-830, 2002.
[25] S. A. Kalogirou, Solar Energy Engineering: Processes and Systems, 1st Edition, pp. 101-250, England: Academic Press, 2009.
[26] S. A. Kalogirou, S. Lloyd, J. Ward, P. Eleftheriou, Design and performance characteristics of a parabolic-trough solar-collector system, Applied Energy, Vol. 47, No. 4, pp. 341-354, 1994.
[27]J. A. Duffie, W. A. Beckman, W. M. Worek, Solar Engineering of Thermal Processes, 4th Edition, pp. 121-217, Boston: Academic Press, 2009.
[28] S. Ozlu, I. Dincer, Performance assessment of a new solar energy-based multigeneration system, Energy, Vol. 112, No. Supplement C, pp. 164-178, 2016.
[29] Y. A. Cengel, Introduction to Thermodynamics and Heat Transfer, 2nd Edition, pp. 50-70, New York: McGraw-Hill 1997.
[30]M. F. A. Goosen, S. S. Sablani, W. H. Shayya, C. Paton, H. Al-Hinai, Thermodynamic and economic considerations in solar desalination, Desalination, Vol. 129, No. 1, pp. 63-89, 2000.
[31]M. M. Naserian, S. Farahat, F. Sarhaddi, Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle, Energy Conversion and Management, Vol. 117, No. Supplement C, pp. 95-105, 2016.
[32]M. M. Naserian, S. Farahat, F. Sarhaddi, Finite time exergy analysis and multi-objective ecological optimization of a regenerative Brayton cycle considering the impact of flow rate variations, Energy Conversion and Management, Vol. 103, No. Supplement C, pp. 790-800, 2015.
[33]M. M. Naserian, S. Farahat, F. Sarhaddi, New exergy analysis of a regenerative closed Brayton cycle, Energy Conversion and Management, Vol. 134, No. Supplement C, pp. 116-124, 2017.
[34] F. A. Boyaghchi, M. Sabaghian, Multi objective optimisation of a Kalina power cycle integrated with parabolic trough solar collectors based on exergy and exergoeconomic concept, International Journal of Energy Technology and Policy, Vol. 12, No. 2, pp. 154-154, 2016.
[35] O. M. Ibrahim, Thermodynamic Properties of Ammonia-Water Mixtures, ASHRAE Transactions: Symposia, Vol. 93, No. 3, p. 1495, 1993.
[36] F. Xu, D. Y. Goswami, Thermodynamic properties of ammonia–water mixtures for power-cycle applications, Energy, Vol. 24, No. 6, pp. 525-536, 1999.
[37]L. Davis, Handbook of Genetic Algorithms, 1st Edition, pp. 2-12, New York: Van Nostrand Reinhold, 1991.