[1] S. Teske, S. Sawyer, O. Schäfer, T. Pregger, S. Simon, T. Naegler, S. Schmid, E. D. Özdemir, J. Pagenkopf, F. Kleiner, Energy
[r] Evolution-a Sustainable World Energy Outlook 2015, 5th Edition, pp. 62-100 Belgium: Greenpeace International, 2015.
[2] S. Teske, T. Pregger, S. Simon, T. Naegler, W. Graus, C. Lins, Energy
[R]evolution 2010—a sustainable world energy outlook, Energy Efficiency, Vol. 4, No. 3, pp. 409-433, 2011.
[3] D. Y. Goswami, Alternative Energy in Agriculture, pp. 36-57, Boca Raton: CRC Press, 1986.
[4] O. Erdinc, M. Uzunoglu, Optimum design of hybrid renewable energy systems: Overview of different approaches, Renewable and Sustainable Energy Reviews, Vol. 16, No. 3, pp. 1412-1425, 2012.
[5] M. Pavlas, P. Stehlík, J. Oral, J. Šikula, Integrating renewable sources of energy into an existing combined heat and power system, Energy, Vol. 31, No. 13, pp. 2499-2511, 2006.
[6] I. Dincer, S. Dost, X. Li, Performance analyses of sensible heat storage systems for thermal applications, International Journal of Energy Research, Vol. 21, No. 12, pp. 1157-1171, 1997.
[7] P. Ahmadi, I. Dincer, M. A. Rosen, Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration, Energy Conversion and Management, Vol. 64, No. Supplement C, pp. 447-453, 2012.
[8] M. Maerefat, P. Shafie, Design of CCHP system for office buildings in Tehran and thermodynamical,environmental and economical evaluation in comparison to conventional system, Modares Mechanical Engineering, Vol. 14, No. 6, pp. 124-134, 2014. (In Persian فارسی(
[9] P. Ahmadi, I. Dincer, Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA), Energy, Vol. 35, No. 12, pp. 5161-5172, 2010.
[10] A. Khaliq, Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration, International Journal of Refrigeration, Vol. 32, No. 3, pp. 534-545, 2009.
[11] P. Ahmadi, M. A. Rosen, I. Dincer, Greenhouse gas emission and exergoenvironmental analyses of a trigeneration energy system, International Journal of Greenhouse Gas Control, Vol. 5, No. 6, pp. 1540-1549, 2011.
[12]C. H. Marston, Parametric analysis of the Kalina cycle, Journal of Engineering for Gas Turbines and Power, Vol. 112, No. 1, pp. 107-116, 1990.
[13] G. Wall, C. C. Chuang, M. Ishida, Exergy study of the Kalina cycle, Analysis and Design of Energy Systems: Analysis of Industrial Processes, Vol. 10, No. 3, pp. 73-77, 1989.
[14]J. Wang, Z. Yan, E. Zhou, Y. Dai, Parametric analysis and optimization of a Kalina cycle driven by solar energy, Applied Thermal Engineering, Vol. 50, No. 1, pp. 408-415, 2013.
[15] H. Chua, H. Toh, K. Ng, Thermodynamic modeling of an ammonia–water absorption chiller, International Journal of Refrigeration, Vol. 25, No. 7, pp. 896-906, 2002.
[16]L. Garousi Farshi, S. M. S. Mahmoudi, M. A. Rosen, M. Yari, M. Amidpour, Exergoeconomic analysis of double effect absorption refrigeration systems, Energy Conversion and Management, Vol. 65, No. Supplement C, pp. 13-25, 2013.
[17]I. Novikov, Efficiency of an atomic power generating installation, Atomic Energy, Vol. 3, No. 5, pp. 1269-1272, 1957.
[18] A. Ghasemkhani, S. Farahat, M. M. Naserian, Evaluation combined cycle irreversible on the criteria of maximum power in finite time thermodynamics, Modares Mechanical Engineering, Vol. 17, No. 11, pp. 333-342, 2018. (In (فارسی Persian
[19] S. Ozlu, I. Dincer, Development and analysis of a solar and wind energy based multigeneration system, Solar Energy, Vol. 122, No. Supplement C, pp. 1279-1295, 2015.
[20] S. Ozlu, I. Dincer, Analysis and evaluation of a new solar energy‐based multigeneration system, International Journal of Energy Research, Vol. 40, No. 10, pp. 1339-1354, 2016.
[21] A. Bejan, Advanced Engineering Thermodynamics, pp. 69-72, New York: John Wiley & Sons, 2016.
[22] S. Farahat, F. Sarhaddi, H. Ajam, Exergetic optimization of flat plate solar collectors, Renewable Energy, Vol. 34, No. 4, pp. 1169-1174, 2009.
[23] A. A. A. Abuelnuor, K. M. Saqr, S. A. A. Mohieldein, K. A. Dafallah, M. M. Abdullah, Y. A. M. Nogoud, Exergy analysis of Garri “2” 180MW combined cycle power plant, Renewable and Sustainable Energy Reviews, Vol. 79, No. Supplement C, pp. 960-969, 2017.
[24] S. A. Kalogirou, Parabolic trough collectors for industrial process heat in Cyprus, Energy, Vol. 27, No. 9, pp. 813-830, 2002.
[25] S. A. Kalogirou, Solar Energy Engineering: Processes and Systems, 1st Edition, pp. 101-250, England: Academic Press, 2009.
[26] S. A. Kalogirou, S. Lloyd, J. Ward, P. Eleftheriou, Design and performance characteristics of a parabolic-trough solar-collector system, Applied Energy, Vol. 47, No. 4, pp. 341-354, 1994.
[27]J. A. Duffie, W. A. Beckman, W. M. Worek, Solar Engineering of Thermal Processes, 4th Edition, pp. 121-217, Boston: Academic Press, 2009.
[28] S. Ozlu, I. Dincer, Performance assessment of a new solar energy-based multigeneration system, Energy, Vol. 112, No. Supplement C, pp. 164-178, 2016.
[29] Y. A. Cengel, Introduction to Thermodynamics and Heat Transfer, 2nd Edition, pp. 50-70, New York: McGraw-Hill 1997.
[30]M. F. A. Goosen, S. S. Sablani, W. H. Shayya, C. Paton, H. Al-Hinai, Thermodynamic and economic considerations in solar desalination, Desalination, Vol. 129, No. 1, pp. 63-89, 2000.
[31]M. M. Naserian, S. Farahat, F. Sarhaddi, Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle, Energy Conversion and Management, Vol. 117, No. Supplement C, pp. 95-105, 2016.
[32]M. M. Naserian, S. Farahat, F. Sarhaddi, Finite time exergy analysis and multi-objective ecological optimization of a regenerative Brayton cycle considering the impact of flow rate variations, Energy Conversion and Management, Vol. 103, No. Supplement C, pp. 790-800, 2015.
[33]M. M. Naserian, S. Farahat, F. Sarhaddi, New exergy analysis of a regenerative closed Brayton cycle, Energy Conversion and Management, Vol. 134, No. Supplement C, pp. 116-124, 2017.
[34] F. A. Boyaghchi, M. Sabaghian, Multi objective optimisation of a Kalina power cycle integrated with parabolic trough solar collectors based on exergy and exergoeconomic concept, International Journal of Energy Technology and Policy, Vol. 12, No. 2, pp. 154-154, 2016.
[35] O. M. Ibrahim, Thermodynamic Properties of Ammonia-Water Mixtures, ASHRAE Transactions: Symposia, Vol. 93, No. 3, p. 1495, 1993.
[36] F. Xu, D. Y. Goswami, Thermodynamic properties of ammonia–water mixtures for power-cycle applications, Energy, Vol. 24, No. 6, pp. 525-536, 1999.
[37]L. Davis, Handbook of Genetic Algorithms, 1st Edition, pp. 2-12, New York: Van Nostrand Reinhold, 1991.