[1] M. Mitsuishi, J. Cao, P. Bártolo, D. Friedrich, A. J. Shih, K. Rajurkar, et al., Biomanufacturing, CIRP Annals-Manufacturing Technology, Vol. 62, pp. 585-606, 2013.
[2] I. Díaz, J. J. Gil, M. Louredo, Bone drilling methodology and tool based on position measurements, Computer Methods and Programs in Biomedicine, Vol. 112, No. 2, pp. 284-292, 2013.
[3] W. Wang, Y. Shi, N. Yang, X. Yuan, Experimental analysis of drilling process in cortical bone, Medical Engineering & Physics, Vol. 36, No. 2, pp. 261-266, 2014.
[4] Y. Wang, M. Cao, X. Zhao, G. Zhu, C. McClean, Y. Zhao, et al., Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone, Medical Engineering & Physics, Vol. 36, No. 11, pp. 1408-1415, 2014.
[5] B. L. Tai, A. C. Palmisano, B. Belmont, T. A. Irwin, J. Holmes, A. J. Shih, Numerical evaluation of sequential bone drilling strategies based on thermal damage, Medical Engineering & Physics, Vol. 37, No. 9, pp. 855-861, 2015.
[6] W. A. Lughmani, K. Bouazza-Marouf, I. Ashcroft, Drilling in cortical bone: A finite element model and experimental investigations, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 42, No. 6, pp. 32-42, 2015.
[7] J. Sui, N. Sugita, K. Ishii, K. Harada, M. Mitsuishi, Mechanistic modeling of bone-drilling process with experimental validation, Journal of Materials Processing Technology, Vol. 214, pp. 1018-1026, 2014.
[8] S. den Dunnen, L. Mulder, G. M. Kerkhoffs, J. Dankelman, G. J. Tuijthof, Waterjet drilling in porcine bone: The effect of the nozzle diameter and bone architecture on the hole dimensions, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 27, No. 10, pp. 84-93, 2013.
[9] V. Bogovič, A. Svete, K. Rupnik, I. Bajsić, Experimental analysis of the temperature rise during the simulation of an implant drilling process using experimental designs, Measurement, Vol. 63, pp. 221-231, 2015.
[10] R. K. Pandey, S. S. Panda, Evaluation of delamination in drilling of bone, Medical Engineering & Physics, Vol. 37, No. 7, pp. 657-664, 2015.
[11] K. J. Chun, B. Schmidt, B. Köktürk, R. Tilz, A. Fürnkranz, M. Konstantinidou, et al., Catheter ablation–new developments in robotics, Herz Kardiovaskuläre Erkrankungen, Vol. 33, pp. 586-589, 2008.
[12] G. Augustin, T. Zigman, S. Davila, T. Udilljak, T. Staroveski, D. Brezak, et al., Cortical bone drilling and thermal osteonecrosis, Clinical Biomechanics, Vol. 27, No. 4, pp. 313-325, 2012.
[13] J. Pransky, Surgeons’ realizations of RoboDoc, Industrial Robot: An International Journal, Vol. 25, pp. 105-108, 1998.
[14] M. H. Aziz, M. A. Ayub, R. Jaafar, Real-time algorithm for detection of breakthrough bone drilling, Procedia Engineering, Vol. 41, pp. 352-359, 2012.
[15] M. Louredo, I. Díaz, J. J. Gil, DRIBON: A mechatronic bone drilling tool, Mechatronics, Vol. 22, pp. 1060-1066, 2012.
[16] R. K. Pandey, S. Panda, Optimization of bone drilling parameters using grey-based fuzzy algorithm, Measurement, Vol. 47, pp. 386-392, 2014.
[17] R. Vaughn, F. Peyton, The influence of rotational speed on temperature rise during cavity preparation, Journal of Dental Research, Vol. 30, No. 5, pp. 737-744, 1951.
[18] G. Augustin, S. Davila, K. Mihoci, T. Udiljak, D. S. Vedrina, A. Antabak, Thermal osteonecrosis and bone drilling parameters revisited, Archives of Orthopaedic and Trauma Surgery, Vol. 128, pp. 71-77, 2008.
[19] G. Augustin, S. Davila, T. Udilljak, T. Staroveski, D. Brezak, S. Babic, Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill, International Orthopaedics, Vol. 36, No. 7, pp. 1449-1456, 2012.
[20] F. Karaca, B. Aksakal, M. Kom, Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: An in vitro study, Medical Engineering & Physics, Vol. 33, No. 10, pp. 1221-1227, 2011.
[21] J. Lee, O. B. Ozdoganlar, Y. Rabin, An experimental investigation on thermal exposure during bone drilling, Medical Engineering & Physics, Vol. 34, No. 10, pp. 1510-1520, 2012.
[22] T. Udiljak, D. Ciglar, S. Skoric, Investigation into bone drilling and thermal bone necrosis, Advance in Production Engineering & Management, Vol. 3, pp. 103-112, 2007.
[23] R. K. Pandey, S. Panda, Multi-performance optimization of bone drilling using Taguchi method based on membership function, Measurement, Vol. 59, pp. 9-13, 2015.
[24] L. S. Matthews, C. Hirsch, Temperatures measured in human cortical bone when drilling, JBJS, Vol. 54, pp. 297-308, 1972.
[25] M. Sharawy, C. E. Misch, N. Weller, S. Tehemar, Heat generation during implant drilling: The significance of motor speed, Journal of Oral and Maxillofacial Surgery, Vol. 60, pp. 1160-1169, 2002.
[26] E. Shakouri, M. H. Sadeghi, M. Maerefat, S. Shajari, Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 228, pp. 330-341, 2014.
[27] K. Alam, Experimental and numerical analysis of conventional and ultrasonically-assisted cutting of bone, PhD Thesis, University of Loughborough, Loughborough, 2009.
[28] R. K. Pandey, S. Panda, Drilling of bone: A comprehensive review, Journal of Clinical Orthopaedics and Trauma, Vol. 4, No. 1, pp. 15-30, 2013.
[29] T. H. Hou, C. H. Su, W. L. Liu, Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm, Powder Technology, Vol. 173, pp. 153-162, 2007.
[30] A. Nekahi, K. Dehghani, Modeling the thermomechanical effects on baking behavior of low carbon steels using response surface methodology, Materials & Design, Vol. 31, pp. 3845-3851, 2010.
[31] M. Moradi, M. Ghoreishi, J. Frostevarg, A. F. Kaplan, An investigation on stability of laser hybrid arc welding, Optics and Lasers in Engineering, Vol. 51, No. 4, pp. 481-487, 2013.
[32] M. Moradi, M. Ghoreishi, M. Torkamany, Modelling and optimization of Nd: YAG laser and tungsten inert gas (TIG) hybrid welding of stainless steel, Lasers in Engineering (Old City Publishing), Vol. 27, 2014.
[33] I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical Modelling and Computational Experiments, Vol. 1, pp. 407-414, 1993.
[34] A. Saltelli, I. M. Sobol, About the use of rank transformation in sensitivity analysis of model output, Reliability Engineering & System Safety, Vol. 50, pp. 225-239, 1995.
[35] D. Vashishth, K. Tanner, W. Bonfield, Contribution, development and morphology of microcracking in cortical bone during crack propagation, Journal of Biomechanics, Vol. 33, No. 9, pp. 1169-1174, 2000.
[36] G. Singh, V. Jain, D. Gupta, A. Ghai, Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 62, No. 1, pp. 355-365, 2016.
[37] K. Alam, A. Mitrofanov, V. V. Silberschmidt, Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone, Medical Engineering & Physics, Vol. 33, No. 2, pp. 234-239, 2011.
[38] R. K. Pandey, S. S. Panda, Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach, Journal of Intelligent Manufacturing, Vol. 26, pp. 1121-1129, 2015.
[39] R. K. Pandey, S. S. Panda, Optimization of multiple quality characteristics in bone drilling using grey relational analysis, Journal of Orthopaedics, Vol. 12, No. 1, pp. 39-45, 2015.
[40] R. K. Pandey, S. S. Panda, Modelling and optimization of temperature in orthopaedic drilling: An in vitro study, Acta of Bioengineering and Biomechanics, Vol. 16, 2014.
[41] T. Staroveski, D. Brezak, T. Udiljak, Drill wear monitoring in cortical bone drilling, Medical Engineering & Physics, Vol. 37, No. 6, pp. 560-566, 2015.
[42] D. C. Montgomery, Design and Analysis of Experiments, Ninth Edittion, pp. 179-220, New Jersey: Wiley & Sons, 2008.
[43] W. A. Knight, G. Boothroyd, Fundamentals of Metal Machining and Machine Tools, Third Edittion, pp. 121-141, Florida: Taylor & Francis Group, 2005.
[44] Y. Altintas, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, Second Edittion, pp. 4-66, Cambridge: Cambridge university press, 2012.