[1] J. Herbert, S. Iniyan, E. Sreevalsan, S. Rajapandian, A review of wind energy technologies., Renew Sust Energy Rev., Vol. 11, pp. 1117-45, 2007.
[2] N. Dalili, A. Edrisy, R. Carriveau, A review of surface engineering issues critical to wind turbine performance, Renewable and Sustainable Energy Reviews, Vol. 13, pp. 428-438, 2009.
[3] P. Antikainen, S. Peuranen, Ice loads case study., in BOREAS V conference, 2000.
[4] W. Jasinski, S. Noe, M. Selig, M. Bragg, Wind turbine performance under icing conditions., Trans ASME J Sol Energy Eng, Vol. 120, pp. 60-5, 1998.
[5] L. Talhaug, K. Vindteknik, G. Ronsten, R. Horbaty, I. Baring-Gould, A. Lacroix, et. al, Wind energy projects in cold climates. 1st ed., Executive Committee of the International Energy Agency Program for Research and Development on Wind Energy Conversion Systems;, pp. 1-36, 2005.
[6] C. Antonini, M. Innocenti, T. Horn, M. Marengo, A. Amirfazli, Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems, Cold Regions Science and Technology, Vol. 67, pp. 58-67, 2011.
[7] E. Bakhtiari, K. Gharali, S. F. Chini, Effects of superhydrophobic surfaces for a wind turbine blade element, in Proceeding of.
[8] C. Navier, Memoire sur les lois du mouvement des fluides., Mem. Acad. R. Sci. Inst. France., Vol. 6, pp. 389-440, 1823.
[9] R. B. Langtry, F. R. Menter, Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes, AIAA, Vol. 47, No. 12, pp. 2894-2906, 2009.
[10] K. Gharali, D. A. Johnson, PIV-based load investigation in dynamic stall for different reduced frequencies, Exp Fluids, Vol. 55, pp. 1803, 2014.