[1] A. E. Bergles, Enhancement of pool boiling, International journal of refrigeration, Vol. 20, No. 8, pp. 545-551, 1997.
[2] S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME-FED, Vol. 231, No.1, pp. 99-106, 1995.
[3] M. Shi, M. Shuai, Z. Chen, Study on pool boiling heat transfer of nanoparticle suspensions on plate surface, Journal of Enhanced Heat Transfer, Vol. 14, No. 3, pp. 223-231, 2007.
[4] R. Chandra, R. Kathiravan, Pool boiling characteristics of multiwalled carbon nanotube based nanofluids over a flat plate heater, International Journal of Heat and Mass Transfer, Vol. 54, No. 5, pp. 1289-1296, 2011.
[5] S. Vafaei, Nanofluid pool boiling heat transfer phenomenon, Powder Technology, Vol. 227, No. 1, pp. 181-192, 2015. [6] P. Vassallo, R. Kumar, Pool boiling heat transfer experiments in silica-water nanofluids, International Journal of Heat and Mass Transfer, Vol.47, No. 2, pp. 407-411, 2004.
[7] A. K. Das, P. Saha, Nucleate boiling of water from plain and structured surfaces, Experimental Thermal and Fluid Science, Vol. 31, No. 8, pp. 967-977, 2007.
[8] A. K. Das, P. Saha, Performance of different structured surfaces in nucleate pool boiling, Applied Thermal Engineering, Vol. 29, No. 17, pp. 3643-3653, 2009.
[9] V. Umesh, B. Raja, A study on nucleate boiling heat transfer characteristics of pentane and CuO-pentane nanofluid on smooth and milled surfaces, Experimental Thermal and Fluid Science, Vol. 64, No. 1, pp. 23-29, 2015.
[10] P. Narayan, A. K. Baby, Survey on nucleate pool boiling of nanofluids: the effect of particle size relative to roughness, Journal of Nanoparticle Research, Vol. 10, No. 7, pp. 1099-1108, 2008.
[11] M. Dadjoo, N. Etesami, M. N. Esfahany, Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid, Applied Thermal Engineering, Vol. 124, No. 1, pp. 353-361, 2017.
[12] R. Pastuszko, M. Piasecka, Pool boiling on surfaces with mini-fins and micro-cavities, 6th European Thermal Sciences Conference, Poitiers, France, September 4-7, 2012.
[13] J. H. Lee, T. Lee, Y. H. Jeong, Experimental study on the pool boiling CHF enhancement using magnetite-water nanofluids, International Journal of Heat and Mass Transfer, Vol. 55, No. 10, pp. 2656-2663, 2012.
[14] A. Abdollahi, M. R. Salimpour, N. Etesami, Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid, Applied Thermal Engineering, Vol. 111, No. I, pp. 1101-1110, 2017
[15] A. Abdollahi, M. R. Salimpour, N. Etesami, Experimental analysis of pool boiling heat transfer of ferrofluid on surfaces deposited with nanofluid, Modares Mechanical Engineering, Vol. 16, No. 2, pp. 19-30, 2016. (in Persian )
[16] P. Berger, N. B. Adelman. K. J. Beckman, Preparation and properties of an aqueous ferrofluid, Journal of Chemical Education, Vol. 76, No. 7, pp. 943-948, 1999.
[17] S. Wu, D. Zhu, X. Li, Thermal energy storage behavior of Alz03-H20 nanofluids, Thermochimica Acta, Vol. 483, No. 1, pp. 73-77, 2009.
[18] J. P. Holman, Experimental methods for engineers, Eighth Edition, pp. 63-72, New York: McGraw-Hill, 2012.
[19] D. Wen. Y. Ding, Experimental investigation into the pool boiling heat transfer of aqueous based Y-alumina nanofluids, Journal of Nanoparticle Research, Vol. 7 , No. 2, pp. 265-274, 2005.