مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل دینامیکی و کنترل حرکت یک ربات کروی روی سطوح غیرتخت

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، واحد خمینی‌شهر، دانشگاه آزاد اسلامی، خمینی‌شهر، ایران
2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه اصفهان، اصفهان، ایران
چکیده
ربات کروی به ربات‌های سیار کروی‌شکل مجهز به مکانیزم محرک داخلی که روی زمین بر اثر غلتیدن پوسته خارجی‌شان حرکت می‌کنند، اطلاق می‌شود. در این تحقیق، ابتدا یک نمونه ربات کروی آونگی، مدل‌سازی شد و سپس به تحلیل دینامیکی و استخراج معادلات حرکت صفحه‌ای ربات بر مسیرهای غیرتخت صفحه‌ای به روش لاگرانژ پرداخته شده است. همچنین با درنظرداشتن کمبود تعداد عملگر نسبت به تعداد درجات آزادی ربات کروی، طراحی یک کنترل‌کننده غیرخطی، مبتنی بر روش‌های خطی‌سازی به کمک فیدبک انجام گرفته است. پس از آن با درنظرگرفتن شرایط اولیه غیرمنطبق بر مسیر، نامعینی پارامتری و نیز گشتاور اغتشاشی بر سیستم به بررسی عملکرد کنترل‌کننده پرداخته شده است. با انتخاب مسیر مناسب برای حرکت ربات، به شبیه‌سازی و حل عددی معادلات حرکت ربات در نرم‌افزار متلب پرداخته و زوایای چرخشی آونگ و گشتاور تولی شده توسط عملگر به‌دست آمده است. نتایج حاصل، گویای عملکرد مطلوب و مقاوم کنترل‌کننده در دنبال‌کردن مسیر تعیین‌شده برای چرخش پوسته کروی ربات حین عبور بر سطح غیرتخت انتخاب‌شده، است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Dynamic Analysis and Motion Control of a Spherical Robot on Non-Flat Surfaces

نویسندگان English

M. Aalipour 1
A. Mokhtarian 1
H. Karimpour 2
1 Mechanical Engineering Department, Mechanical Engineering Faculty, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
2 Mechanical Engineering Department, Engineering Faculty, University of Isfahan, Isfahan, Iran
چکیده English

Spherical robots are the mobile robots with spherical shapes equipped to an internal drive mechanism that moves on the ground due to their external shell rolling. In this research, first, a pendulum spherical robot is modeled, then using the Lagrange method, dynamic equations of plane motion of robot on the non-flat surface are derived. Considering the scarcity of the number of operators relative to the number of degrees of freedom of the spherical robot, designing of a non-linear controller is performed based on feedback linearization techniques. Therefore, regarding non-confirm initial conditions on the trajectory, parametric uncertainty and disturbance torque on the robot, the performance of the system has been investigated. By selecting the appropriate rotation trajectory, the robot motion is simulated in MATLAB software and in following the pendulum rotation angle and actuating torque are obtained. The results indicate that the designed controller has proper and resistant performance in tracking selected trajectory for sphere shell rotation during moving on a non-flat surface.

کلیدواژه‌ها English

Spherical Robot
Non-Flat Surface
Motion Equations
Non-Linear Control
Parametric uncertainty
Bicchi A, Balluchi A, Prattichizzo D, Gorelli A. Introducing the "Sphericle": An experimental testbed for research and teaching in non-holonomy. Proceedings of International Conference on Robotics and Automation, 25-25 April 1997, Albuquerque, NM, USA, USA. Piscataway: IEEE; 2002. [Link]
Halme A, Schonberg T, Wang Y. Motion control of a spherical mobile robot. Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE, 18-21 March 1996, Mie, Japan, Japan. Piscataway: IEEE; 2002. [Link]
Bhattacharya S, Agrawal S. Design experiments and motion planning of a spherical rolling robot. IEEE International Conference on Robotics and Automation, 24-28 April 2000, San Francisco, CA, USA. Piscataway: IEEE; 2002. [Link]
Zhan Q, Zhou T, Chen M, Cai S. Dynamic trajectory planning of a spherical mobile robot. IEEE Conference on Robotics, Automation and Mechatronics, 1-3 June 2006, Bangkok, Thailand. Piscataway: IEEE; 2006. [Link] [DOI:10.1109/RAMECH.2006.252705]
Shu G, Zhan Q, Cai Y. Motion control of spherical robot based on conservation of angular momentum. 2009 International Conference on Mechatronics and Automation, 9-12 Aug. 2009, Changchun, China. Piscataway: IEEE; 2009. [Link]
Zhang W, Liu X, Fang C, Sun H. Dynamics modeling of spherical robot with arms by using Kane's Method. 2008 Fourth International Conference on Natural Computation, 18-20 Oct. 2008, Jinan, China. Piscataway: IEEE; 2008. [Link] [DOI:10.1109/ICNC.2008.595]
Joshi V, Banavar RN, Hippalgaonkar R. Design and analysis of a spherical mobile robot. Mechanism and Machine Theory. 2010;45(2):130-136. [Link] [DOI:10.1016/j.mechmachtheory.2009.04.003]
Karimpour H, Keshmiri M, Mahzoon M. Gyroscopic stability analysis of a rolling robot. Sharif Mechanical Engineering. 2014;30-3(2.2):105-112. [Persian] [Link]
Liu DL, Sun HX, Jia QX. Stabilization and path following of spherical robot. IEEE Conference on Robotics, Automation and Mechatronics, 21-24 Sept. 2008, Chengdu, China. Piscataway: IEEE; 2008. [Link] [DOI:10.1109/RAMECH.2008.4681358]
Azizi MR, Naderi D. Dynamic Modeling and trajectory planning for a mobile spherical robot with a 3Dof inner mechanism. Mechanism and Machine Theory. 2013;64:251-261. [Link] [DOI:10.1016/j.mechmachtheory.2013.02.004]
Muraleedharan N, Cohen DS, Isenberg DR. Omnidirectional locomotion control of a pendulum driven spherical robot. SoutheastCon.2016, 30 March-3 April 2016, Norfolk, VA, USA. Piscataway: IEEE; 2016. [Link] [DOI:10.1109/SECON.2016.7506648]
Ivanova TB, Kilin AA, Pivovarova EN. Controlled motion of a spherical robot with feedback. I. Journal of Dynamical and Control Systems. 2018;24(3):497-510. [Link] [DOI:10.1007/s10883-017-9387-2]
Sadigh MJ, Salehi A, Keshmiri M. A Semi-manual master-slave algorithm for control of flexible micro-macro manipulators. International Conference on Methods and Models in Automation and Robotics. Unknown Publisher; 2007. [Link]
Meriam JL, Kraige LG, Bolton JN. Engineering mechanics: Dynamics. 8th Edition. Hoboken: John Wiley & Sons; 2016. P. 313-390. [Link]