مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تعیین درصد حجمی بحرانی پودر فولاد کم‌آلیاژ Fe-2Ni و انتخاب سیستم چسب مناسب از دیدگاه رئولوژیکی به‌منظور قالب‌گیری تزریقی پودر فلز

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی مکانیک، مرکز نظرآباد، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران
2 گروه کامپوزیت، مجتمع مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران
3 گروه مهندسی مکانیک، مجتمع مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران
چکیده
فرآیند قالب‌گیری تزریقی پودر فلز، روشی نوین به‌منظور تولید قطعات با هندسه پیچیده در تیراژ بالا است. یکی از مهم‌ترین ملاحظات این فرآیند، انتخاب خوراک متشکل از درصد حجمی مناسب پودر فلز ‌همراه سیستم چسب مناسب است. عیوبی که در مرحله تزریق در قطعه ایجاد می‌شود، در مراحل بعدی فرآیند قابل اصلاح نبوده و از این رو بررسی رئولوژیکی خوراک ماده اولیه به‌منظور حصول اطمینان از داشتن شرایط لازم برای تزریق امری ضروری است. در این مقاله به انتخاب سیستم چسب مناسب به‌منظور قالب‌گیری قطعه از جنس فولاد کم‌آلیاژ Fe-۲Ni پرداخته شده است. بدین منظور ابتدا از یک سیستم چسب پایه واکس چندجزیی با درصدهای مختلف اجزاء تشکیل‌دهنده برای تولید ۱۱ حالت خوراک حاوی ۶۰% حجمی پودر فلز استفاده شده است. در ادامه به‌منظور بررسی خوراک‌ها از دیدگاه رئولوژیکی، ضمن اندازه‌گیری گرانروی خوراک‌ها، تغییرات آن نسبت به نرخ برش محاسبه شده است. نتایج نشان داد که خوراک حاوی ۶۶% پارافین‌واکس، ۱۹% پلی‌پروپیلن، ۱۰% کارناباواکس و ۵% اسیداستئاریک دارای کمترین گرانروی و کمترین حساسیت نسبت به نرخ برش است که منجر به پر‌کردن کامل حفره قالب و تولید قطعه سالم حتی برای هندسه‌های بسیار پیچیده می‌شود. پس از دستیابی به سیستم چسب مناسب، درصد حجمی بحرانی پودر فلز نیز برای سیستم چسب فوق با استفاده از دستگاه رئومتر گشتاور محاسبه شد که برابر با مقدار ۵۸% حجمی است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Critical Powder Volume Concentration (CPVC) of Fe-2Ni low-Alloy Steel Powder and Selection of a Proper Binder System from Rheological Point of View in order to Metal Injection Molding

نویسندگان English

A. Askari 1
M. Alaei 2
A. Mehdipoor Omrani 3
Kh. Nekouee 2
1 Department of Mechanical Engineering, NazarAbad Center, Karaj Branch, Islamic Azad University, Karaj, Iran
2 Center of Composite Materials, Faculty of Materials & Manufacturing Technology, Malek Ashtar University of Technology, Tehran, Iran
3 Mechanical Engineering Department, Materials & Manufacturing Technologies Faculty, Malek Ashtar University of Technology, Tehran, Iran
چکیده English

Metal Injection Molding (MIM) is a novel manufacturing technology, used for complex geometric parts at a high production rate. One of the most important parameters in this method is the selection of proper feedstock consisting of optimal powder loading and an optimized binder system. The defects, which appear during the injection process, cannot be removed in later process stages and this is for the reason that the rheological behavior of the feedstock needs to be checked to make sure that it has the required injection properties. In this study, a multi-component wax-based binder system has been selected in order to inject Fe-2Ni powder. For this reason, a multi-component wax-based binder system with different percentages of constituents was used to produce 11 feed modes containing 60% vol. % of the powder. Further, the viscosity and its variation with the shear rate for 11 developed samples have been measured. The results showed that the feedstock consisting of 66 vol. % Paraffin wax, 19 vol. % Polypropylene, 10 vol. % Carnauba wax and 5 vol. % Stearic Acid has the lowest viscosity and lowest sensitivity to the shear rate and this leads to the complete filling of the mold cavity and production of a healthy component for very complex geometries. After achieving the proper binder system, the critical powder loading for the binder system was measured by 58 vol. % using torque rheometer.

کلیدواژه‌ها English

Metal Injection Molding (MIM)
Fe-2Ni Low-Alloy Steel
Binder System
Rheological properties
Huang B, Liang S, Qu X. The rheology of metal injection molding. Journal of Materials Processing Technology. 2003;137(1-3):132-137. [Link] [DOI:10.1016/S0924-0136(02)01100-7]
Hausnerová B, Marcaníková L, Filip P, Sáha P. Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water‐soluble polymer binder. Polymer Engineering & Science. 2011;51(7):1376-1382. [Link] [DOI:10.1002/pen.21928]
Macosko CW. Rheology: Principles, measurements, and applications. New York: Wily-VCH; 1994. [Link]
Hidalgo J, Jiménez-Morales A, Torralba JM. Torque rheology of zircon feedstocks for powder injection moulding. Journal of the European Ceramic Society. 2012;32(16):4063-4072. [Link] [DOI:10.1016/j.jeurceramsoc.2012.06.023]
Thomas-Vielma P, Cervera A, Levenfeld B, Várez A. Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. Journal of the European Ceramic Society. 2008;28(4):763-771. [Link] [DOI:10.1016/j.jeurceramsoc.2007.08.004]
Reddy JJ, Ravi N, Vijayakumar M. A simple model for viscosity of powder injection moulding mixes with binder content above powder critical binder volume concentration. Journal of the European Ceramic Society. 2000;20(12):2183-2190. [Link] [DOI:10.1016/S0955-2219(00)00096-0]
Ibrahim MH, Muhamad N, Sulong AB. Rheological investigation of water atomised stainless steel powder for micro metal injection molding. International Journal of Mechanical and Materials Engineering. 2009;4(1):1-8. [Link]
Agote I, Odriozola A, Gutierrez M, Santamarıa A, Quintanilla J, Coupelle P, et al. Rheological study of waste porcelain feedstocks for injection moulding. Journal of the European Ceramic Society. 2001;21(16):2843-2853. [Link] [DOI:10.1016/S0955-2219(01)00210-2]
Li Y, Li L, Khalil KA. Effect of powder loading on metal injection molding stainless steels. Journal of Materials Processing Technology. 2007;183(2-3):432-439. [Link] [DOI:10.1016/j.jmatprotec.2006.10.039]
Sotomayor ME, Várez A, Levenfeld B. Influence of powder particle size distribution on rheological properties of 316 L powder injection moulding feedstocks. Powder Technology. 2010;200(1-2):30-36. [Link] [DOI:10.1016/j.powtec.2010.02.003]
Sotomayor ME, Levenfeld B, Várez A. Powder injection moulding of premixed ferritic and austenitic stainless steel powders. Materials Science and Engineering: A. 2011;528(9):3480-3488. [Link] [DOI:10.1016/j.msea.2011.01.038]
Chhabra RP. Bubbles, drops, and particles in non-Newtonian fluids (Chemical Industries). 2nd Edition. Boca Raton: CRC Press; 2006. [Link] [DOI:10.1201/9781420015386]
German RM, Bose A. Injection molding of metals and ceramics. Princeton: Metal Powder Industries Federation; 1997. [Link]
Haw PL, Muhamad N, Murthadha H. The characterization and flow behavior of 316L stainless steel feedstock for Micro Metal Injection Molding (μMIM). Applied Mechanics and Materials. 2011;44-47:2872-2876. [Link] [DOI:10.4028/www.scientific.net/AMM.44-47.2872]
Levenfeld B, Gruzza A, Várez A, Torralba JM. Modified metal injection moulding process of 316L stainless steel powders using thermosetting binder. Powder Metallurgy. 2000;43(3):233-237. [Link] [DOI:10.1179/003258900665998]
Lin KH. Wear behavior and mechanical performance of metal injection molded Fe-2Ni sintered components. Materials & Design. 2011;32(3):1273-1282. [Link] [DOI:10.1016/j.matdes.2010.09.034]
Urval R, Lee S, Atre SV, Park SJ, German RM. Optimisation of process conditions in powder injection moulding of microsystem components using a robust design method: part I. primary design parameters. Powder Metallurgy. 2008;51(2):133-142. [Link] [DOI:10.1179/174329008X284796]
Omar MA, Subuki I. Sintering characteristics of injection moulded 316L component using palm-based biopolymer binder. In: Shatokha V, editor. Sintering-Methods and Products. Unknown City: IntechOpen; 2012. [Link]
Sclavons M, Laurent M, Devaux J, Carlier V. Maleic anhydride-grafted polypropylene: FTIR study of a model polymer grafted by ene-reaction. Polymer. 2005;46(19):8062-8067. [Link] [DOI:10.1016/j.polymer.2005.06.115]
Moballegh L, Morshedian J, Esfandeh M. Copper injection molding using a thermoplastic binder based on paraffin wax. Materials Letters. 2005;59(22):2832-2837. [Link] [DOI:10.1016/j.matlet.2005.04.027]
Rei M, Milke EC, Gomes RM, Schaeffer L, Souza JP. Low-pressure injection molding processing of a 316-L stainless steel feedstock. Materials Letters. 2002;52(4-5):360-365. [Link] [DOI:10.1016/S0167-577X(01)00422-0]
Li YM, Liu XQ, Luo FH, Yue JL. Effects of surfactant on properties of MIM feedstock. Transactions of Nonferrous Metals Society of China. 2007;17(1):1-8. [Link] [DOI:10.1016/S1003-6326(07)60039-9]
Liu ZY, Loh NH, Tor SB, Khor KA, Murakoshi Y, Maeda R. Binder system for micropowder injection molding. Materials Letters. 2001;48(1):31-38. [Link] [DOI:10.1016/S0167-577X(00)00276-7]
Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR, Editors. Polymer handbook. Hoboken: John Wiley & Sons; 1999. [Link]
Oh JW, Lee WS, Park SJ. Investigation and modeling of binder removal process in nano/micro bimodal powder injection molding. The International Journal of Advanced Manufacturing Technology. 2018;97:4115-4126. [Link] [DOI:10.1007/s00170-018-2263-8]
Kong X, Barriere T, Gelin JC. Determination of critical and optimal powder loadings for 316L fine stainless steel feedstocks for micro-powder injection molding. Journal of Materials Processing Technology. 2012;212(11):2173-2182. [Link] [DOI:10.1016/j.jmatprotec.2012.05.023]
Khakbiz M, Simchi A, Bagheri R. Analysis of the rheological behavior and stability of 316L stainless steel-TiC powder injection molding feedstock. Materials Science and Engineering: A. 2005;407(1-2):105-113. [Link] [DOI:10.1016/j.msea.2005.06.057]