مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تاثیر لایه ‌واسط برنج اعمالی به‌صورت فویل و پوشش پاشش حرارتی بر ریزساختار و خواص مکانیکی اتصال فاز مایع گذرای آلیاژ آلومینیوم به تیتانیم

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی نفت معدن و مواد، دانشکده فنی و مهندسی، واحد تهران مرکزی، دانشگاه آزاد اسلامی تهران، ایران
2 گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی(ره)، قزوین، ایران
چکیده
از آنجایی که پاشش ‌حرارتی، فرآیندی اقتصادی و سریع برای پوشش‌دهی سطح محسوب می‌شود و می‌تواند سطحی زبر و تمیز ایجاد نماید، می‌توان از آن به‌منظور اعمال لایه ‌واسط در روش اتصال‌دهی فاز مایع گذرا استفاده نمود. در تحقیق حاضر، اتصال فاز مایع گذرای آلیاژ Al۲۰۲۴ به Ti-۶Al-۴V با استفاده از لایه‌ واسط فویل برنج و نیز پاشش ‌حرارتی برنج بر روی فلز پایه آلومینیوم مورد بررسی قرار گرفت. نتایج نشان داد که با استفاده از لایه ‌واسط اعمالی به‌صورت پاشش‌حرارتی، به‌دلیل ایجاد عیوب مختلف، مجراهای بیشتری برای نفوذ فراهم شده و به همین علت، پتانسیل نفوذ آلومینیوم و تیتانیم در فصل مشترک اتصال افزایش می‌یابد. سازوکار ایجاد اتصال، مشتمل بر نفوذ مس به سمت آلومینیوم و تیتانیم و تشکیل ترکیبات بین ‌فلزی نظیر TiAl۳، TiAl، Al۲Cu و AlCuMg و همچنین نفوذ مس از طریق مرزدانه‌های آلومینیوم و تشکیل فاز یوتکتیک است. تشکیل این ترکیبات بین ‌فلزی با استفاده از طیف‌سنجی تفکیک انرژی و پراش پرتو ایکس تایید شد. انحلال فلزات پایه در ناحیه اتصال و فرآیند انجماد هم‌دما در حالتی که از لایه ‌واسط پاشش ‌حرارتی استفاده شد، بیشتر و سریع‌تر از حالتی بود که از فویل به‌عنوان لایه‌ واسط استفاده شد. استحکام برشی ایجادشده در حالت استفاده از پوشش برنج پاشش‌ حرارتی، بیشتر (۲۵مگاپاسکال) از حالتی بود که از لایه‌ واسط به‌صورت فویل (۱۴/۶مگاپاسکال) استفاده شد. این کاهش استحکام، می‌تواند به‌علت تجمع و رشد ترکیبات ترد بین ‌فلزی در نزدیکی فصل مشترک اتصال، به‌دلیل کاهش پتانسیل نفوذی آلومینیوم و تیتانیم در ناحیه اتصال باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of brass interlayer applied as foil and thermal spray coat on microstructure and mechanical properties of transient liquid phase bonding of Al alloy to Ti alloy

نویسندگان English

M. Farshbaf 1
M.A. Mofid 1
M. Belbasi 1
M. Jafarzadegan 2
H. Naeimian 1
1 Department of Petroleum, Mining and Material, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Materials Engineering, Faculty of Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran
چکیده English

Thermal spraying is economical and rapid coating process that creates a rough and clean surface. As a result it can be used for applying the interlayer in transient liquid phase bonding. In the present study, transient liquid phase bonding Al 2024 to Ti-6Al-4V was investigated using brass interlayer, where the interlayer was Cu-Zn foil Cu-Zn thermal spray coat on Al substrate, respectively. The results show that by using thermal spray coat as interlayer, because of the formation of different defects that can be considered as diffusion channels, diffusion potential of Ti and Al becomes higher at the interface. It is concluded that the mechanism of bonding formation involves the diffusion of Cu into Al and Ti base materials and formation of TiAl، TiAl، Cu2 Al and AlCuMg phases and also diffusion of Cu through Al grain boundaries and formation of eutectic phases across the grain boundaries. The formation of these intermetallic phases was confirmed by energy dispersive spectroscopy and X-ray diffraction. Dissolution of the base metals in the joint area and the isothermal solidification process of the thermal sprayed interlayer is more and faster than the foil interlayer. The joint with thermal spray brass coat as interlayer, gives higher shear strength of 25 MPa in comparison with the case of using brass foil as interlayer (14.6 MPa). The decrease in bond strength can be attributed to aggregation and growth of the brittle intermetallics near the joint interface due to lower diffusion potential of Ti and Al in the joint zone.

کلیدواژه‌ها English

Transient liquid phase
Brass foil
Al alloy
Ti alloy
Thermal Spray
Microstructure
Sam S, Kundu S, Chatterjee S. Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: Interface microstructure and strength properties. Materials & Design. 2012;40:237-244. [Link] [DOI:10.1016/j.matdes.2012.02.058]
Samavatian M, Khodabandeh A, Halvaee A, Amadeh AA. Transient liquid phase bonding of Al 2024 to Ti−6Al−4V alloy using Cu−Zn interlayer. Transactions of Nonferrous Metals Society China. 2015;25(3):770-775. [Link] [DOI:10.1016/S1003-6326(15)63662-7]
Kenevisi MS, Mousavi Khoie SM. An investigation on microstructure and mechanical properties of Al7075 to Ti-6Al-4V transient liquid phase (TLP) bonded joint. Materials & Design. 2012;38:19-25. [Link] [DOI:10.1016/j.matdes.2012.01.046]
Alhazaa AN, Khan TI. Diffusion bonding of Al7075 to Ti-6Al-4V using Cu coatings and Sn-3.6Ag-1Cu interlayers. Journal of Alloys and Compounds. 2010;494(1-2):351-358. [Link] [DOI:10.1016/j.jallcom.2010.01.037]
Samavatian M, Halvaee A, Amadeh AA, Khodabandeh A. An investigation on microstructure evolution and mechanical properties during liquid state diffusion bonding of Al2024 to Ti-6Al-4V. Materials Characterization. 2014;98:113-118. [Link] [DOI:10.1016/j.matchar.2014.10.018]
Atieh AM, Khan T. Effect of process parameters on semi-solid TLP bonding of Ti-6Al-4V to Mg-AZ31. Journal of Materials Science. 2013;48(19):6737-6745. [Link] [DOI:10.1007/s10853-013-7475-6]
Anbarzadeh A, Sabet H, Abbasi M. Effects of successive-stage transient liquid phase (S-TLP) on microstructure and mechanical properties of Al2024 to Ti-6Al-4V joint. Materials Letters. 2016;178:280-283. [Link] [DOI:10.1016/j.matlet.2016.04.071]
Alhazaa A, Khan TI, Haq I. Transient liquid phase (TLP) bonding of Al7075 to Ti-6Al-4V alloy. Materials Characterization. 2010;61(3):312-317. [Link] [DOI:10.1016/j.matchar.2009.12.014]
Kenevisi MS, Mousavi Khoie SM, Alaei M. Microstructural evaluation and mechanical properties of the diffusion bonded Al/Ti alloys joint. Mechanics of Materials. 2013;64:69-75. [Link] [DOI:10.1016/j.mechmat.2013.04.011]
Davoodi Jamaloei A, Salimijazi HR, Edris H, Mostaghimi J. Study of TLP bonding of Ti-6Al-4V alloy produced by vacuum plasma spray forming and forging. Materials & Design. 2017;121:355-366. [Link] [DOI:10.1016/j.matdes.2017.02.046]
Antala N, Rathod P. Process parameter selection for uniform deposition of chrome carbide-nicklechrome (Cr3C2-20NiCr) thermal flame spray coatings on stainless steel (SS347H) boiler tube. IJEDR Journal. 2017;5:632-641. [Link]
Okamoto H, Schlesinger ME, Mueller EM. ASM Handbook: Alloy phase diagrams. Cleveland: ASM international; 1992. [Link]
ASTM standard D1002. Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (metal-to-metal) [Internet]. Unknown Publisher City & Publisher & Cited & Cite. 1999. [Link]
Rachidi R, El Kihela B, Delaunoisb F. Microstructure and mechanical characterization of NiCrBSi alloy and NiCrBSi-WC composite coatings produced by flame spraying. Materials Science and Engineering: B. 2019;241:13-21. [Link] [DOI:10.1016/j.mseb.2019.02.002]
Jafarian M, Saboktakin Rizi M, Jafarian M, Honarmand M, Javadinejad HR, Ghaheri A, et al. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding. Materials Science and Engineering: A. 2016;666:372-379. [Link] [DOI:10.1016/j.msea.2016.04.011]
Fernandus MJ, Senthilkumar T, Balasubramania V. Developing temperature- time and pressure-time diagrams for diffusion bonding AZ80 magnesium and AA6061 aluminium alloys. Materials & Design. 2011;32(3):1651-1656. [Link] [DOI:10.1016/j.matdes.2010.10.011]
Styles MJ, Hutchinson CR, Chen Y, Deschamps A, Bastow TJ. The coexistence of two S (Al2CuMg) phases in Al-Cu-Mg alloys. Acta Materialia. 2012;60(20):6940-6951. [Link] [DOI:10.1016/j.actamat.2012.08.044]
Cook GO, Sorensen CD. Overview of transient liquid phase and partial transient liquid phase bonding. Materials Science. 2011;46:5305-5323. [Link] [DOI:10.1007/s10853-011-5561-1]
Jin YJ, Khan TI. Effect of bonding time on microstructure and mechanical properties of transient liquid phase bonded magnesium AZ31 alloy. Materials & Design. 2012;38:32-37. [Link] [DOI:10.1016/j.matdes.2012.01.039]
Zuruzi AS, Li H, Dong G. Effects of surface roughness on the diffusion bonding of Al alloy 6061 in air. Materials Science and Engineering: A. 1999;270(2):244-248. [Link] [DOI:10.1016/S0921-5093(99)00188-4]
Lee MK, Lee JG, Choi YH, Kim DW, Rhee CK, Lee YB, et al. Interlayer engineering for dissimilar bonding of titanium to stainless steel. Materials Letters. 2010;64(9):1105-1108. [Link] [DOI:10.1016/j.matlet.2010.02.024]