Modares Mechanical Engineering

Modares Mechanical Engineering

Analysis of the Onset Process of Spontaneous Oscillations in a Standing Wave Thermoacoustic Engine, Using the Experimental Method and an Improved Numerical Solution Method

Document Type : Original Research

Authors
1 PhD student of Tarbiatmodares university
2 professor of tarbiat modares university
3 assistant professor of aerospace research institute
4 PhD student of tharbiat modares university
Abstract
Thermoacoustic engine is an energy conversion device that uses the energy carrying capacity of sound waves to generate sound power from thermal energy. Although it is not difficult to build thermoacoustic engines due to having no moving parts, many researchers have always tried to reduce the temperature difference required to run thermoacoustic engines, so that these devices can be used in most industries. To investigate the onset conditions of the system, temperature changes in the stack section of a standing wave Thermoacoustic engine were investigated. Numerical analysis of temperature changes along the stack, was performed using the rotts thermoacoustic equations. The temperature was calculated instantaneously along the stack, and this process continued until the thermal equilibrium was established in the system. A standing wave with an open end was designed and built to validate the temperature curves obtained at different moments. This thermoacoustic engine was able to display the temperature instantaneously along the stack with parallel plates structure. The data obtained from the experimental tests and the temperature changes diagram resulting from the numerical solution method, showed a good agreement with each other for the onset process in the system.
Keywords

Subjects


[1] C. J. Lawn and G. Penelet, “Common features in the thermoacoustics of flames and engines,” Int. J. Spray Combust. Dyn., vol. 10, no. 1, pp. 3–37, 2018, doi: 10.1177/1756827717743911.
[2] Y. KATABIRA and K. HARIU, “Review of the literature on psoriasis.,” Hifuka No Rinsho, vol. 5, no. 1968, pp. 1–9, 1963.
[3] C. Sondhauss, “Ueber die Schallschwingungen der Luft in erhitzten Glasröhren und in gedeckten Pfeifen von ungleicher Weite,” Ann. der Phys. und Chemie, vol. 155, no. 1, pp. 1–34, 1850, doi: 10.1002/andp.18501550102.
[4] L. R. W., “The Theory of Sound,” Nature, vol. 58, no. 1493, pp. 121–122, Jun. 1898, doi: 10.1038/058121a0.
[5] N. Rott, “Damped and thermally driven acoustic oscillations in wide and narrow tubes,” Zeitschrift für Angew. Math. und Phys. ZAMP, vol. 20, no. 2, pp. 230–243, 1969, doi: 10.1007/BF01595562.
[6] W. P. Arnott, H. E. Bass, and R. Raspet, “General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections,” J. Acoust. Soc. Am., vol. 90, no. 6, pp. 3228–3237, Dec. 1991, doi: 10.1121/1.401432.
[7] G. W. Swift, “Thermoacoustic engines,” J. Acoust. Soc. Am., vol. 84, no. 4, pp. 1145–1180, Oct. 1988, doi: 10.1121/1.396617.
[8] A. A. Atchley, H. E. Bass, T. J. Hofler, and H.-T. Lin, “Study of a thermoacoustic prime mover below onset of self-oscillation,” 1992. [Online]. Available: http://asadl.org/terms.
[9] A. A. Atchley, “Standing wave analysis of a thermoacoustic prime mover below onset of self‐oscillation,” J. Acoust. Soc. Am., vol. 92, no. 5, pp. 2907–2914, 1992, doi: 10.1121/1.404355.
[10] J. P. Clark, W. C. Ward, and G. W. Swift, “Design environment for low-amplitude thermoacoustic energy conversion (DeltaEC),” J. Acoust. Soc. Am., vol. 122, no. 5, p. 3014, 2007, doi: 10.1121/1.2942768.
[11] N. Rott, Nikolaus rott, vol. 20. 1980.
[12] L. M. Qiu, B. H. Lai, Y. F. Li, and D. M. Sun, “Numerical simulation of the onset characteristics in a standing wave thermoacoustic engine based on thermodynamic analysis,” Int. J. Heat Mass Transf., vol. 55, no. 7–8, pp. 2200–2203, 2012, doi: 10.1016/j.ijheatmasstransfer.2011.11.043.
[13] M. E. Poese and S. L. Garrett, “Performance measurements on a thermoacoustic refrigerator driven at high amplitudes,” J. Acoust. Soc. Am., vol. 107, no. 5, pp. 2480–2486, 2000, doi: 10.1121/1.428635.
[14] A. Cox, “Natural Engines,” Phys. Today, vol. 38, no. 8, pp. 50–58, 1985, doi: 10.1063/1.880985.
[15] S. Zhou and Y. Matsubara, “Experimental research of thermoacoustic prime mover,” Cryogenics (Guildf)., vol. 38, no. 8, pp. 813–822, 1998, doi: 10.1016/S0011-2275(98)00055-1.
[16] G. Chen, G. Krishan, Y. Yang, L. Tang, and B. Mace, International Journal of Heat and Mass Transfer “Numerical investigation of synthetic jets driven by thermoacoustic standing waves,” Int. J. Heat Mass Transf., vol. 146, p. 118859, 2020, doi: 10.1016/j.ijheatmasstransfer.2019.118859.
[17] A. Piccolo, “Numerical Study of Entropy Generation Within Thermoacoustic Heat Exchangers with Plane Fins,” no. July, pp. 8228–8239, 2015, doi: 10.3390/e17127875.
[18] A. I. A. El-rahman, W. A. Abdelfattah, and M. A. Fouad, International Journal of Heat and Mass Transfer “A 3D investigation of thermoacoustic fields in a square stack,” Int. J. Heat Mass Transf., vol. 108, pp. 292–300, 2017, doi: 10.1016/j.ijheatmasstransfer.2016.12.015.
[19] S. Mergen, E. Yıldırım, and H. Türkoğlu, “Numerical Study on Effects of Computational Domain Length on Flow Field in Standing Wave Thermoacoustic Refrigerators,” Cryogenics (Guildf)., 2018, doi: 10.1016/j.cryogenics.2018.09.012.
[20] O. M. Ilori, A. J. Jaworski, and X. Mao, “Experimental and Numerical Investigations of Thermal Characteristics of Heat Exchangers in Oscillatory Flow,” Appl. Therm. Eng., 2018, doi: 10.1016/j.applthermaleng.2018.07.073.
[21] N. Cao, J. R. Olson, G. W. Swift, and S. Chen, “Energy flux density in a thermoacoustic couple,” J. Acoust. Soc. Am., vol. 99, no. 6, pp. 3456–3464, 1996, doi: 10.1121/1.414992.
[22] H. Ishikawa and D. J. Mee, “Numerical investigations of flow and energy fields near a thermoacoustic couple,” J. Acoust. Soc. Am., vol. 111, no. 2, pp. 831–839, 2002, doi: 10.1121/1.1430687.
[23] A. Piccolo and G. Pistone, “Estimation of heat transfer coefficients in oscillating flows: The thermoacoustic case,” Int. J. Heat Mass Transf., vol. 49, no. 9–10, pp. 1631–1642, 2006, doi: 10.1016/j.ijheatmasstransfer.2005.11.009.
[24] G. W. Swift, “Thermoacoustics,” in Springer Handbook of Acoustics, Springer New York, 2014, pp. 247–263.
[25] P. Aben, “High-Amplitude Thermoacoustic Flow Interacting with Solid Boundaries,” Eindhoven University of Technology Library, 2010.
[26] بهرامی، محسن؛ صبوحی، زهیر؛ امی، فتح‌اله؛ "مدلسازی شروع نوسانات در موتور گرماصوتی به روش همترائی مدار الکتریکی "، پنجمین کنگره انجمن مهندسی صوتیات ایران (ملی)-اص‌ا،1397
[27] A. Piccolo and G. Cannistraro, “Convective heat transport along a thermoacoustic couple in the transient regime,” Int. J. Therm. Sci., vol. 41, no. 11, pp. 1067–1075, 2002, doi: 10.1016/S1290-0729(02)01393-5.
[28] L. Zoontjens, C. Q. Howard, A. C. Zander, and B. S. Cazzolato, “Numerical study of flow and energy fields in thermoacoustic couples of non-zero thickness,” Int. J. Therm. Sci., vol. 48, no. 4, pp. 733–746, 2009, doi: 10.1016/j.ijthermalsci.2008.06.007.
[29] L. Zoontjens, C. Q. Howard, A. C. Zander, and B. S. Cazzolato, “Numerical comparison of thermoacoustic couples with modified stack plate edges,” Int. J. Heat Mass Transf., vol. 51, no. 19–20, pp. 4829–4840, 2008, doi: 10.1016/j.ijheatmasstransfer.2008.02.037.
[30] J. H. Xiao, “Thermoacoustic heat transportation and energy transformation Part 1: Formulation of the problem,” Cryogenics (Guildf)., vol. 35, no. 1, pp. 15–19, 1995, doi: 10.1016/0011-2275(95)90419-G.
[31] D. Marx and P. Blanc-benon, “Numerical calculation of the temperature difference between the extremities of a thermoacoustic stack plate,” vol. 45, pp. 163–172, 2005, doi: 10.1016/j.cryogenics.2004.08.007.