1. Mohan P. A critical review: the modification, properties, and applications of epoxy resins. Polymer-Plastics Technology and Engineering. 2013; 52(2):107-25.
2. Montazeri A, Javadpour J, Khavandi A, Tcharkhtchi A, Mohajeri A. Mechanical properties of multi-walled carbon nanotube/epoxy composites. Materials & Design. 2010; 31(9):4202-8.
3. Lorenz H, Fritzsche J, Das A, Stöckelhuber K, Jurk R, Heinrich G, Klüppel M. Advanced elastomer nano-composites based on CNT-hybrid filler systems. Composites Science and Technology. 2009; 69(13):2135-43.
4. Geim AK, Novoselov KS. The rise of graphene. National Library of Medicine. 2007; 6(3):183-91.
5. Ren F, Zhu G, Ren P, Wang Y, Cui X. In situ polymerization of graphene oxide and cyanate ester–epoxy with enhanced mechanical and thermal properties. Applied Surface Science. 2014; 316:549-57.
6. Hummers Jr WS, Offeman RE. Preparation of graphitic oxide. Journal of the American Chemical Society. 1958; 80(6):1339-.
7. Liu Q, Zhou X, Fan X, Zhu C, Yao X, Liu Z. Mechanical and thermal properties of epoxy resin nanocomposites reinforced with graphene oxide. Polymer-Plastics Technology and Engineering. 2012; 51(3):251-6.
8. Norhakim N, Ahmad SH, Chia CH, Huang NM. Mechanical and thermal properties of graphene oxide filled epoxy nanocomposites. Sains Malaysiana. 2014; 43(4):603-9.
9. Gharebiglou M, Izadkhah MS, Erfan-Niya H, Entezami AA. Improving the mechanical and thermal properties of chemically modified graphene oxide/polypropylene nanocomposite. Modares Mechanical Engineering. 2016; 16(8):196-206.
10. Ma P, Jiang G, Chen Q, Cong H, Nie X. Experimental investigation on the compression behaviors of epoxy with carbon nanotube under high strain rates. Composites Part B: Engineering. 2015; 69:526-33.
11. Shokrieh M, Esmkhani M, Shahverdi H, Vahedi F. Effect of graphene nanosheets (GNS) and graphite nanoplatelets (GNP) on the mechanical properties of epoxy nanocomposites. Science of Advanced Materials. 2013; 5(3):260-6.
12. Susmel L, Taylor D. On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features. Engineering Fracture Mechanics. 2008; 75(15):4410-21.
13. Torabi AR. On the use of the Equivalent Material Concept to predict tensile load-bearing capacity of ductile steel bolts containing V-shaped threads. Engineering Fracture Mechanics. 2013; 97:136-47.
14. Saboori B, Torabi AR, Kamjoo MR. Evaluation of the equivalent material concept in mixed mode I/III fracture estimation of V-notched Al7075-T6 plates. Engineering Fracture Mechanics. 2020; 237:107259.
15. Torabi AR, Rahimi AS, Ayatollahi MR. Mixed mode І/ІІ fracture prediction of blunt V-notched nanocomposite specimens with nonlinear behavior by means of the Equivalent Material Concept. Composites Part B: Engineering. 2018; 154:363-73.
16. Torabi AR. Estimation of tensile load-bearing capacity of ductile metallic materials weakened by a V-notch: The equivalent material concept. Materials Science and Engineering: A. 2012; 536:249-55.
17. Erdogan F, Sih GC. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering. 1963; 85(4):519-525.
18. Gomez F, Guinea G, Elices M. Failure criteria for linear elastic materials with U-notches. International Journal of Fracture. 2006; 141(1):99-113.
19. Rahimi AS, Ayatollahi MR, Torabi AR. Fracture study in notched ductile polymeric plates subjected to mixed mode I/II loading: Application of equivalent material concept. European Journal of Mechanics - A/Solids. 2018; 70:37-43.
17. امینی نژاد شهاب، مجذوبی غلامحسین، ثابت سیدعلیرضا. مطالعه عددی-تجربی اثر نرخ کرنش بر خواص کششی نانوکامپوزیت های گرافن-اپوکسی. مهندسی مکانیک مدرس. 1398؛ 20(2): 499-508. http://mme.modares.ac.ir/article-15-31932-fa.html