1. Ohno K, Tachikawa K, Manz A. Microfluidics: Applications for analytical purposes in chemistry and biochemistry. Electrophoresis [Internet]. 2008 Nov 26;29(22):4443–53. Available from: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/elps.200800121
2. Son K, Brumley DR, Stocker R. Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics. Nat Rev Microbiol [Internet]. 2015 Dec 16;13(12):761–75. Available from: https://www.nature.com/articles/nrmicro3567
3. Yi C, Li CW, Ji S, Yang M. Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta [Internet]. 2006 Feb;560(1–2):1–23. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003267005020945
4. Duncombe TA, Tentori AM, Herr AE. Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Biol [Internet]. 2015 Sep 21;16(9):554–67. Available from: https://www.nature.com/articles/nrm4041
5. Narayanamurthy V, Jeroish ZE, Bhuvaneshwari KS, Bayat P, Premkumar R, Samsuri F, et al. Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis. RSC Adv [Internet]. 2020;10(20):11652–80. Available from: https://xlink.rsc.org/?DOI=D0RA00263A
6. Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT. Microfluidics for cell separation. Vol. 48, Medical and Biological Engineering and Computing. 2010. p. 999–1014.
7. Bouloorchi Tabalvandani M, Saeidpour Z, Habibi Z, Javadizadeh S, Firoozabadi SA, Badieirostami M. Microfluidics as an emerging paradigm for assisted reproductive technology: A sperm separation perspective. Biomed Microdevices [Internet]. 2024 Jun 23;26(2):23. Available from: https://link.springer.com/10.1007/s10544-024-00705-2
8. Asci Erkocyigit B, Ozufuklar O, Yardim A, Guler Celik E, Timur S. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics. Biosensors [Internet]. 2023 Mar 15;13(3):387. Available from: https://www.mdpi.com/2079-6374/13/3/387
9. Lin CC, Wang JH, Wu HW, Lee GB. Microfluidic Immunoassays. J Assoc Lab Autom [Internet]. 2010 Jun;15(3):253–74. Available from: http://journals.sagepub.com/doi/10.1016/j.jala.2010.01.013
10. Bayareh M, Ashani MN, Usefian A. Active and passive micromixers: A comprehensive review. Chem Eng Process - Process Intensif [Internet]. 2020 Jan;147:107771. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0255270119308736
11. Cai G, Xue L, Zhang H, Lin J. A review on micromixers. Micromachines. 2017;8(9).
12. Cheng Y, Jiang Y, Wang W. Numerical simulation for electro-osmotic mixing under three types of periodic potentials in a T-shaped micro-mixer. Chem Eng Process - Process Intensif [Internet]. 2018;127:93–102. Available from: https://doi.org/10.1016/j.cep.2018.03.017
13. Rudyak V, Minakov A. Modeling and Optimization of Y-Type Micromixers. Micromachines [Internet]. 2014 Oct 20;5(4):886–912. Available from: http://www.mdpi.com/2072-666X/5/4/886
14. Wang J, Chen X, Liu H, Li Y, Lang T, Wang R, et al. Efficient Mixing of Microfluidic Chip with a Three-Dimensional Spiral Structure. ACS Omega. 2022;7(1):1527–36.
15. Hu X, Yang F, Zhao H, Guo M, Wang Y. Design and Evaluation of Three-Dimensional Zigzag Chaotic Micromixers for Biochemical Applications. Ind Eng Chem Res [Internet]. 2021 Nov 10;60(44):16116–25. Available from: https://pubs.acs.org/doi/10.1021/acs.iecr.1c02435
16. Juraeva M, Kang DJ. Design and Mixing Analysis of a Passive Micromixer with Circulation Promoters. Micromachines [Internet]. 2024 Jun 27;15(7):831. Available from: https://www.mdpi.com/2072-666X/15/7/831
17. Chen Z, Shen L, Zhao X, Chen H, Xiao Y, Zhang Y, et al. Acoustofluidic micromixers: From rational design to lab-on-a-chip applications. Appl Mater Today [Internet]. 2022 Mar;26:101356. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352940721004066
18. Chen X, Zhang L. A review on micromixers actuated with magnetic nanomaterials. Microchim Acta [Internet]. 2017 Oct 24;184(10):3639–49. Available from: http://link.springer.com/10.1007/s00604-017-2462-2
19. Franc¸ais O, Jullien MC, Rousseau L, Poulichet P, Desportes S, Lefevre JP, et al. A Thermally-Driven Micromixer Based on Fluid Volume Variation. In: Volume 2: Automotive Systems, Bioengineering and Biomedical Technology, Fluids Engineering, Maintenance Engineering and Non-Destructive Evaluation, and Nanotechnology [Internet]. ASMEDC; 2006. p. 685–92. Available from: https://asmedigitalcollection.asme.org/ESDA/proceedings/ESDA2006/42495/685/317989
20. Lv H, Chen X. New insights into the mechanism of fluid mixing in the micromixer based on alternating current electric heating with film heaters. Int J Heat Mass Transf [Internet]. 2021 Dec;181:121902. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0017931021010073
21. Rashidi S, Bafekr H, Valipour MS, Esfahani JA. A review on the application, simulation, and experiment of the electrokinetic mixers. Chem Eng Process Process Intensif [Internet]. 2018;126(October 2017):108–22. Available from: https://doi.org/10.1016/j.cep.2018.02.021
22. Liu RH, Yang J, Pindera MZ, Athavale M, Grodzinski P. Bubble-induced acoustic micromixing. Lab Chip [Internet]. 2002;2(3):151–7. Available from: https://xlink.rsc.org/?DOI=b201952c
23. Zhao X, Chen H, Xiao Y, Zhang J, Watanabe S, Hao N. Sharp-edge–driven spiral acoustic micromixers for functional nanoarray engineering. Mater Today Nano [Internet]. 2023 Jun;22:100338. Available from: https://doi.org/10.1016/j.buildenv.2023.110984
24. Ramos A, Morgan H, Green NG, Castellanos A. AC Electric-Field-Induced Fluid Flow in Microelectrodes. J Colloid Interface Sci [Internet]. 1999 Sep;217(2):420–2. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979799963464
25. Green NG, Ramos A, González A, Morgan H, Castellanos A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E [Internet]. 2000 Apr 1;61(4):4011–8. Available from: https://link.aps.org/doi/10.1103/PhysRevE.61.4011
26. Zhang YT, Chen H, Mezic I, Meinhart CD, Petzold L, MacDonald NC. SOI processing of a ring electrokinetic chaotic micromixer. 2004 NSTI Nanotechnol Conf Trade Show - NSTI Nanotech 2004. 2004;1(December 2013):292–5.
27. Gayen B, Manna NK, Biswas N. Enhanced mixing quality of ring-type electroosmotic micromixer using baffles. Chem Eng Process - Process Intensif. 2023;189(January).
28. Xiong S, Chen X, Chen H, Chen Y, Zhang W. Numerical study on an electroosmotic micromixer with rhombic structure. J Dispers Sci Technol [Internet]. 2021;42(9):1331–7. Available from: https://doi.org/10.1080/01932691.2020.1748644
29. Wu Z, Chen X. Numerical simulation of a novel microfluidic electroosmotic micromixer with Cantor fractal structure. Microsyst Technol. 2019;25(8):3157–64.
30. Xiong S, Chen X, Wang J. A novel three-dimensional electroosmotic micromixer based on the Koch fractal principle. RSC Adv. 2021;11(21):12860–5.
31. Xiong S, Chen X. Mixing performance of an electroosmotic micromixer with Koch fractal structure. Int J Chem React Eng. 2021;19(2):97–103.
32. Hunter ST. Zeta Potential in Colloid Science [Internet]. Academic Press. New York: Elsevier; 1981. Available from: https://linkinghub.elsevier.com/retrieve/pii/C20130073896
33. Wu Z, Li D. Mixing and flow regulating by induced-charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles. Microfluid Nanofluidics. 2008;5(1):65–76.
34. Shah I, Su Jeon H, Ali M, Yang DH, Choi KH. Optimal parametric mixing analysis of active and passive micromixers using Taguchi method. Proc Inst Mech Eng Part E J Process Mech Eng. 2019;233(6):1292–303.
35. Usefian A, Bayareh M. Numerical and experimental study on mixing performance of a novel electro-osmotic micro-mixer. Meccanica [Internet]. 2019;54(8):1149–62. Available from: https://doi.org/10.1007/s11012-019-01018-y
36. Gong Y, Cheng X. Numerical investigation of electroosmotic mixing in a contraction–expansion microchannel. Chem Eng Process - Process Intensif [Internet]. 2023;192(August):109492. Available from: https://doi.org/10.1016/j.cep.2023.109492