[
1] S. Bagavathiappan, B. B. Lahiri, T. Saravanan, J. Philip, and T. Jayakumar, "Infrared thermography for condition monitoring – A review," Infrared Physics & Technology, vol. 60, pp. 35-55, 2013/09/01/ 2013,
doi:10.1016/j.infrared.2013.03.006.
[
2] P. Meshkizadeh, "Assigning the heating mechanism for characterizing corrosion defects using thermography," master Faculty of Mechanical Engineering, University of Tehran, 2020.
[
3] B. K. N. Rao, "Condition monitoring and the integrity of industrial systems," in Handbook of Condition Monitoring: Techniques and Methodology, A. Davies Ed. Dordrecht: Springer Netherlands, 1998, pp. 3-34,
doi: 10.1007/978-94-011-4924-2_1.
[4
] A. I. Moskovchenko, M. Švantner, V. P. Vavilov, and A. O. Chulkov, "Characterizing Depth of Defects with Low Size/Depth Aspect Ratio and Low Thermal Reflection by Using Pulsed IR Thermography," (in eng), Materials (Basel), vol. 14, no. 8, Apr 10 2021,
doi:10.3390/ma14081886.
[
5] K. Nategh, "Improving the nondestructive thermography inspection results for detection of circular defects in coated metals using principal component analysis," NDT Technology, vol. 2, no. 9, pp. 33-40, 2022,
doi:10.30494/jndt.2022.339719.1092.
[6
] A. Ardebili and M. Farahani, "Delamination Defect Evaluation in CFRP Composite Patches by the Use of Active Thermography," Journal of Nondestructive Evaluation, vol. 41, no. 3, p. 61, 2022/09/05 2022, doi:
doi:10.1007/s10921-022-00892-z.
[7
] Y. Chung, S. Lee, and W. Kim, "Latest Advances in Common Signal Processing of Pulsed Thermography for Enhanced Detectability: A Review," Applied Sciences, vol. 11, no. 24, p. 12168, 2021. [Online]. Available:
https://www.mdpi.com/2076-3417/11/24/12168.
[
8] J. Andrés, J. M. López-Higuera, and F. J. Madruga, "Quantification by Signal to Noise Ratio of Active Infrared Thermography Data Processing Techniques," Optics and Photonics Journal, vol. 03, pp. 20-26, 01/01 2013,
doi:10.4236/opj.2013.34A004.
[
9] R. Khoshkbary, M. Farahani, M. Safarabadi, and S. Asghari, "Using of Modulated Thermography for Nondestructive Testing of Polymer Plates," NDT Technology, vol. 2, no. 4, pp. 38-45, 2019,
doi:10.30494/jndt.2019.95383.
[1
0] M. Rodríguez-Martín et al., "Predictive Models for the Characterization of Internal Defects in Additive Materials from Active Thermography Sequences Supported by Machine Learning Methods," Sensors, vol. 20, no. 14,
doi:10.3390/s20143982.
[1
1] M. Rodríguez-Martin, J. Pisonero, D. González-Aguilera, and F. J. Madruga, "Flash thermography to detect and evaluate impacts in polycarbonate parts produced by additive manufacturing," NDT & E International, vol. 146, p. 103163, 2024,
doi:10.1016/j.ndteint.2024.103163.
[
12] J. L. Bartlett, F. M. Heim, Y. V. Murty, and X. Li, "In situ defect detection in selective laser melting via full-field infrared thermography," Additive Manufacturing, vol. 24, pp. 595-605, 2018/12/01/ 2018,
do:10.1016/j.addma.2018.10.045.
[1
3] R. Yang and Y. He, "Optically and non-optically excited thermography for composites: A review," Infrared Physics & Technology, vol. 75, pp. 26-50, 2016/03/01/ 2016,
doi:10.1016/j.infrared.2015.12.026.
[14] K. H. H. Goh, Q. F. Lim, and P. K. Pallathadka, "Asynchronous Lock In Thermography of 3D Printed PLA and ABS samples," p. arXiv:1805.01343, doi:10.48550/arXiv.1805.01343