Modares Mechanical Engineering

Modares Mechanical Engineering

Investigation of porosity parameters variation on liquid water transport in gas diffusion layers of polymer electrolyte membrane fuel cells using the lattice Boltzmann method

Authors
1 student
2 Member of univesity of Birjand
3 kerman
4 birjand uni
5 null
Abstract
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) has been widely used in recent decades due to operating at low temperature with high energy density. Water management is one of the main challenges for the development and commercialization of PEMFCs, which has a significant impact on their performance. The behavior of liquid water in the PEMFCs is very important. In this study a pore scale model is used to investigate liquid water transport in the gas diffusion layer (GDL) of PEMFCs. The GDL layer generated by randomly placing circular solid particles. The pseudo-potential lattice Boltzmann (LB) proposed by shan and chen is used to simulate two phase flow. The code was validated in three modes and is verified correctly then, the effect of three pore size particles, porosity coefficient and hydrophobicity of the GDL on the water transfer has been investigated. The results show that, over time, the amount of saturation in the GDL increases and ultimately reaches a constant value. In addition to by reducing the diameter of the particles, the amount of saturation and the number of breakthrough sites decreased, which increases the oxygen penetration.Also, the amount of local water saturation in the catalyst layer (CL) interface and the GDL tends toward one, indicating that oxygen molecules in these regions should be dissolved in water and then fed to the CL. In addition to, the amount of liquid water inside the porous layer decreases with increasing hydrophobicity
Keywords

Subjects


1. B. Langenecker, Effects of Ultrasound on Deformation Characteristics of Metals. IEEE Transactions on Sonics and Ultrasonics, 13(1): pp 1-, 1966.
2. O.K. Izumi, Y. Oyama and Y. Suzuki, Effects of superimposed ultrasonic vibration on compressive deformation of metals. Transactions of the Japan institute of metals, 7(3): p. 162-16, 1966.
3. Y. Daud, M. Lucas, and Z. Huang, Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium. Journal of Materials Processing Technology, 186(1): pp 179-190, 2007.
4. T. Wen, et al, Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process. International Journal of Minerals, Metallurgy, and Materials, 18(1): pp 70-76, 2011.
5. M. Shalvandi, et al, Influence of ultrasonic stress relief on stainless steel 316 specimens: A comparison with thermal stress relief, Materials & Design, 46: p. 713-723, 2013.
6. F. Ahmadi, M. Farzin, and M. Mandegari, Effect of grain size on ultrasonic softening of pure aluminum. Ultrasonics, 63: pp 111-117, 2015.
7. C.Wang, et al, Acoustic softening and stress superposition in ultrasonic vibration assisted uniaxial tension of copper foil: Experiments and modeling. Materials & Design, 112: pp 246-253, 2016.
8. G.F. Vander Voort, et al, ASM handbook. Metallography and microstructures, 9, 2004.
9. A. Standard, E8-04, Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standards, 3, 2004.
10. A.Siddiq, and T. El Sayed, Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM. Materials Letters, 65(2): p. 356-359, 2011.