Modares Mechanical Engineering

Modares Mechanical Engineering

Prediction of Mechanical Properties and Failure of Honeycomb and DNA Inspired Mesh Structure under Tensile Load

Document Type : Original Research

Authors
Tarbiat Modares University
Abstract
This study introduces a novel lattice structure, whose unit cell design draws inspiration from the fusion of honeycomb patterns and the DNA found at the core of cells, constructed from PLA material. This structure underwent tensile testing along the X and Y axes. Additionally, the paper presents a new analytical-numerical approach that combines Timoshenko beam theory, mechanics of materials principles, and finite element analysis to determine the mechanical properties and forecast failure in cellular structures. This method was corroborated using the ABAQUS commercial software. Research indicated that a closer ratio of thickness to unit cell length, specifically 1/10, leads to more precise predictions for the mechanical behavior of the cellular structure under tension along the X axis. The findings showed that, in comparison to the Y axis, the X direction exhibited a 7% increase in load-bearing capacity and an 8% increase in maximum yield stress, yet the equivalent stiffness was 75% lower
Keywords

Subjects


مراجع
[1] L. Mullen, R. C. Stamp, W. K. Brooks, E. Jones, and C. J. Sutcliffe, “Selective laser melting: A regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 89, no. 2, pp. 325–334, 2009, doi: 10.1002/jbm.b.31219.
[2] M. Helou and S. Kara, “Design, analysis and manufacturing of lattice structures: An overview,” Int. J. Comput. Integr. Manuf., vol. 31, no. 3, pp. 243–261, 2018, doi: 10.1080/0951192X.2017.1407456.
[3] A. N. Gent and A. G. Thomas, “The deformation of foamed elastic materials,” J. Appl. Polym. Sci., vol. 1, no. 1, pp. 107–113, 1959, doi: 10.1002/app.1959.070010117.
[4] M. F. A. L.J. Gibson, Cellular Solids: Structure and Properties, vol. 22, no. 4. 1989.
[5] A. Nazir, K. M. Abate, A. Kumar, and J. Y. Jeng, “A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures,” Int. J. Adv. Manuf. Technol., vol. 104, no. 9–12, pp. 3489–3510, 2019, doi: 10.1007/s00170-019-04085-3.
[6] M. Askari et al., “Additive manufacturing of metamaterials: A review,” Addit. Manuf., vol. 36, 2020, doi: 10.1016/j.addma.2020.101562.
[7] https://www.techbriefs.com/component/content/article/25607-lattice-structure-absorbs-vibrations
[8] https://en.wikipedia.org/wiki/Junkers_J_1
[9] R. Potluri and U. Koteswara Rao, “Determination of Elastic Properties of Reverted Hexagonal Honeycomb Core: FEM Approach,” Mater. Today Proc., vol. 4, no. 8, pp. 8645–8653, 2017, doi: 10.1016/j.matpr.2017.07.213.
[10] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, and A. A. Zadpoor, “Mechanical properties of additively manufactured octagonal honeycombs,” Mater. Sci. Eng. C, vol. 69, pp. 1307–1317, 2016, doi: 10.1016/j.msec.2016.08.020.
[11] A. Ajdari, B. H. Jahromi, J. Papadopoulos, H. Nayeb-Hashemi, and A. Vaziri, “Hierarchical honeycombs with tailorable properties,” Int. J. Solids Struct., vol. 49, no. 11–12, pp. 1413–1419, 2012, doi: 10.1016/j.ijsolstr.2012.02.029.
[12] C. Quan, B. Han, Z. Hou, Q. Zhang, X. Tian, and T. J. Lu, “3D Printed Continuous Fiber Reinforced Composite Auxetic Honeycomb Structures,” Compos. Part B Eng., vol. 187, 2020, doi: 10.1016/j.compositesb.2020.107858.
[13] A. Farrokhabadi, M. M. Ashrafian, H. Gharehbaghi, and R. Nazari, “Evaluation of the equivalent mechanical properties in a novel composite cruciform honeycomb using analytical and numerical methods,” Compos. Struct., vol. 275, 2021, doi: 10.1016/j.compstruct.2021.114410.
[14] A. Cernescu, J. Romanoff, H. Remes, N. Faur, and J. Jelovica, “Equivalent mechanical properties for cylindrical cell honeycomb core structure,” Compos. Struct., vol. 108, no. 1, pp. 866–875, 2014, doi: 10.1016/j.compstruct.2013.10.017.
[15] W. Liu, H. Li, and J. Zhang, “Elastic properties of a cellular structure with in-plane corrugated cosine beams,” Compos. Struct., vol. 180, pp. 251–262, 2017, doi: 10.1016/j.compstruct.2017.08.022.
[16] J. Huang, X. Gong, Q. Zhang, F. Scarpa, Y. Liu, and J. Leng, “In-plane mechanics of a novel zero Poisson’s ratio honeycomb core,” Compos. Part B Eng., vol. 89, pp. 67–76, 2016, doi: 10.1016/j.compositesb.2015.11.032.
[17] V. H. Carneiro, “On the elastic properties of three-dimensional honeycomb lattices,” Compos. Commun., vol. 17, pp. 14–17, 2020, doi: 10.1016/j.coco.2019.11.005.
[18] L. Yang, O. Harrysson, H. West, and D. Cormier, “Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing,” Int. J. Solids Struct., vol. 69–70, pp. 475–490, 2015, doi: 10.1016/j.ijsolstr.2015.05.005.
[19] F. Meng, C. Chen, D. Hu, and J. Song, “Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: Atomistic simulations and predictive modeling,” J. Mech. Phys. Solids, vol. 109, pp. 241–251, 2017, doi: 10.1016/j.jmps.2017.09.003.
[20] M. Xu et al., “In-plane compression behavior of hybrid honeycomb metastructures: Theoretical and experimental studies,” Aerosp. Sci. Technol., vol. 106, 2020, doi: 10.1016/j.ast.2020.106081.
[21] T. Mukhopadhyay and S. Adhikari, “Effective in-plane elastic properties of auxetic honeycombs with spatial irregularity,” Mech. Mater., vol. 95, pp. 204–222, 2016, doi: 10.1016/j.mechmat.2016.01.009.
[22] L. Lan, J. Sun, F. Hong, D. Wang, Y. Zhang, and M. Fu, “Nonlinear constitutive relations of thin-walled honeycomb structure,” Mech. Mater., vol. 149, 2020, doi: 10.1016/j.mechmat.2020.103556.
[23] Please cite this article as: Yan Wu , Li Yang , The Effect of Unit Cell Size and Topology on Tensile Failure Behavior of 2D Lattice Structures, International Journal of Mechanical Sciences (2019), doi: https://doi.org/10.1016/j.ijmecsci.2019.105342.