1- Balliger NK, Gladman T. Work hardening of dual-phase steels. Met Sci. 1981;15:95–108.
2- Keeler S, Kimchi M. Advanced high-strength steels application guidelines V5. WorldAutoSteel; 2015.
3- Sarwar M, Priestner R. Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel. J Mater Sci. 1996;31:2091–5.
4- Davies RG. Influence of martensite composition and content on the properties of dual phase steels. Metall Trans A. 1978;9:671–9.
5- Sonsino CM, Morgenstern C, Hanselka H. Betriebsfestigkeit von Aluminiumschweißverbindungen unter korrosiven Umgebungsbedingungen im Fahrzeugbau. In: GUS – Tagung Umwelteinflüsse erfassen, simulieren, bewerten; 26–28 March 2003; Pfinztal. p. 245–56.
6- Haibach E. Betriebsfestigkeit. 2nd ed. Düsseldorf: VDI-Verlag; 2002.
7- Wells JM, Buck O, Roth LD, Tier JK. Ultrasonic fatigue. In: Proceedings of first international conference on fatigue and corrosion; 1982; Philadelphia (USA): The Metal Society of AIME.
8- Bathias C, Paris PC. Gigacycle fatigue in mechanical practice. New York: Marcel Dekker Publishing; 2006.
9- Anbarlooie B, Hosseini-Toudeshky H, Hosseini M, et al. Experimental and 3D micromechanical analysis of stress–strain behavior and damage initiation in dual-phase steels. J Mater Eng Perform. 2019;28:2903–18.
10- Saha, D.C., Nayak, S.S., Biro, E. et al. Mechanism of Secondary Hardening in Rapid Tempering of Dual Phase Steel. Metall Mater Trans A 45, 6153–6162 (2014).
11- Najmul H. Abid, Rashid K. Abu Al-Rub, Anthony N. Palazotto, Micromechanical finite element analysis of the effects of martensite morphology on the overall mechanical behavior of dual phase steel, International Journal of Solids and Structures, Volumes 104–105, 2017, Pages 8-24, ISSN 0020-7683,
12- Mazaheri, Y., Kermanpur, A. & Najafizadeh, A. Microstructures, Mechanical Properties, and Strain Hardening Behavior of an Ultrahigh Strength Dual Phase Steel Developed by Intercritical Annealing of Cold-Rolled Ferrite/Martensite. Metall Mater Trans A 46, 3052–3062 (2015).
13- Chen, H., Gu, Z., An, H. et al. Precise nanomedicine for intelligent therapy of cancer. Sci. China Chem. 61, 1503–1552 (2018).
14- Diehl, M., An, D., Shanthraj, P. et al. Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure. Phys Mesomech 20, 311–323 (2017).
15- DONG Danyang, LIU Yang, WANG Lei, SU Liangjin. EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF DP780 STEEL. Acta Metall Sin, 2013, 49(2): 159-166.
16- Ghaheri A, Shafyei A, Honarmand M. Effects of inter-critical temperatures on martensite morphology, volume fraction and mechanical properties of dual phase steels obtained from direct and continuous annealing cycles. Mater Des. 2014;62:305–19.
17- Trško L, Nový F, Bokůvka O, Jambor M. Ultrasonic fatigue testing in the tension-compression mode. J Vis Exp. 2018;(133):e57007.
18- Alireza Behvar, Meysam Haghshenas, A critical review on very high cycle corrosion fatigue: Mechanisms, methods, materials, and models,Journal of Space Safety Engineering,Volume 10, Issue 3,2023,Pages 284-323,ISSN 2468-8967,
19- Sarwar M, Priestner R. Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel. J Mater Sci. 1996;31:2091–5.
20- Ghadbeigi H, Pinna C, Celotto S, Yates JR. Local plastic strain evolution in a high strength dual-phase steel. Mater Sci Eng A. 2010;527:5026–32.
21- Porter DA, Easterling KE. Phase transformations in metals and alloys. 3rd ed. Taylor & Francis; 1992.
22- Dieter GE, Bacon DJ. Mechanical metallurgy. New York: McGraw-Hill; 1986.
23- Shen HP, Lei TC, Liu JZ. Microscopic deformation behaviour of martensitic–ferritic dual-phase steels. Mater Sci Technol. 1986;2:28–33.