Modares Mechanical Engineering

Modares Mechanical Engineering

Design of a Two-Stage Microfluidic System for Sperm Isolation in Azoospermic Patients for Application in In Vitro Fertilization (IVF)

Document Type : Original Research

Authors
1 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
2 Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
Abstract
 
Infertility is an increasingly prevalent global issue, affecting approximately %15 of couples, with male factors accounting for half of these cases. The most severe form of male infertility is non-obstructive azoospermia (NOA), in which sperm production is drastically reduced. Sperm retrieval from testicular tissue samples in these patients is a time-consuming process that relies heavily on the operator’s expertise. The presence of background cells and tissue debris further complicates the identification of sperm. In this study, a two-stage passive microfluidic system was designed and simulated, integrating an inertial spiral module with a deterministic lateral displacement (DLD) module. In the first stage, the spiral module utilizes inertial and Dean vortex forces to remove larger particles from the main flow, thereby preventing channel blockage in the second stage. In the subsequent stage, the high-resolution DLD module removes the remaining background cells, completing the sperm separation process. Simulation results demonstrate that particles smaller than 4.7 μm in diameter, corresponding to sperm cells and residual red blood cells, are efficiently separated from larger background cells, effectively preventing clogging in downstream microfluidic channels. Given the DLD module’s high resolution, the system can isolate sperm cells from residual red blood cells with more than %95 efficiency.
 
Keywords

Subjects


[1] R. Nosrati et al., "Microfluidics for sperm analysis and selection," Nat. Rev. Urol., vol. 14, no. 12, pp. 707–730,  2017. doi:10.1038/nrurol.2017.175
[2] G. R. Dohle, "Male infertility in cancer patients: Review of the literature," Int. J. Urol., vol. 17, no. 4, pp. 327–331,  2010. doi:10.1111/j.1442-2042.2010.02484.x
[3] A. Agarwal, A. Mulgund, A. Hamada, and M. R. Chyatte, "A unique view on male infertility around the globe," Reprod. Biol. Endocrinol., vol. 13, no. 37, pp. 1–9, 2015. doi:10.1186/s12958-015-0032-1
[4] K. A. Frey, "Male reproductive health and infertility," Prim. Care, vol. 37, no. 3, pp. 643–652, 2010. doi:10.1016/j.pop.2010.04.005
[5] M. Wosnitzer, M. Goldstein, and M. P. Hardy, "Review of Azoospermia," Spermatogenesis, vol. 4, no. 1, pp. 1–7, 2014. doi:10.4161/spmg.28218
[6] G. Verheyen, B. P. Todorovic, and T. H. Tournaye, "Processing and selection of surgically‑retrieved sperm for ICSI: a review," Basic Clin. Androl., vol. 27, no. 6, pp. 745–752, 2017. doi:10.1186/s12610-017-0062-8
[7] C. L. Mangum et al., "Towards a better testicular sperm extraction: novel sperm sorting technologies for non‑motile sperm extracted by microdissection TESE," Transl. Androl. Urol., vol. 9, no. 2, pp. 206–214, 2020. doi:10.21037/tau.2020.01.09
[8] A. Barani, P. Mosaddegh, S. H. Javanmard, and S. Sepehrirahnama, "Designing and Manufacturing of a 2‑Node Acoustofluidic Microchannel," Modares Mech. Eng., vol. 21, no. 10, pp. 651–660, 2021.
[9] S. Arbabi, M. Mafi, and M. Soltani, "Two‑dimensional modeling of bio‑particles separation by Inertia in micro‑channel," Modares Mech. Eng., vol. 18, no. 1, pp. 239–246, 2018.
[10] G. Traini, M. E. Ragosta, L. Tamburrino, A. Papini, S. Cipriani, L. Vignozzi, E. Baldi, و S. Marchiani، "Microfluidic Sorting Can Be Applied for Assisted Reproduction Sperm Selection in Different Cases of Semen Abnormalities," Life, vol. 15، no. 5، 2025. doi:10.3390/life15050790
[11] Y. Deruyver, D. Vanderschueren, and F. V. D. Aa, "Outcome of microdissection TESE compared with conventional TESE in non‑obstructive azoospermia: a systematic review," Andrology, vol. 2, no. 1, pp. 20–24, 2014. doi:10.1111/j.2047-2927.2013.00206.x
[12] R. Samuel et al., "Microfluidics: The future of microdissection TESE?," Syst. Biol. Reprod. Med., vol. 62, no. 3, pp. 161–170, 2016. doi:10.1080/19396368.2016.1140763
[13] M. E. Warkiani, A. K. P. Tay, G. Guan, and J. Han, "Membrane‑less microfiltration using inertial microfluidics," Sci. Rep., vol. 5, no. 11018, 2015. doi:10.1038/srep11018
[14] N. Xiang et al., "Precise Size‑Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement," Anal. Chem., vol. 91, no. 15, pp. 10328–10334, 2019. doi:10.1021/acs.analchem.9b02320
[15] H. Jeon et al., "Multi‑dimensional‑double‑spiral (MDDS) inertial microfluidic platform for sperm isolation directly from the raw semen sample," Sci. Rep., vol. 12, no. 4212, 2022. doi:10.1038/s41598-022-07947-6
[16] C. Ni et al., "Inertia‑magnetic microfluidics for rapid and high‑purity separation of malignant tumor cells," Anal. Chem., vol. 397, no. 15, 2023. doi:10.1021/acs.analchem.3c02015
[17] M. Nouri et al., "Enhancing circulating tumor cells separation with integrated spiral and U‑shaped cross‑section microchannels using elasto‑inertial microfluidics," *Anal. Chem.*, vol. 382, no. 1, 2025.
[18] J. Son, R. Samuel, B. K. Gale, D. T. Carrell, and J. M. Hotaling, "Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel," Biomicrofluidics, vol. 11, no. 5, p. 054106, 2017. doi:10.1063/1.4994548
[19] S. Nepal, H. Feng, and B. K. Gale, "Optimization of a microfluidic spiral channel used to separate sperm from blood cells," Biomicrofluidics, vol. 14, no. 6, p. 064103, Nov. 5, 2020. doi:10.1063/5.0029508
[20] J. Son, K. Murphy, R. Samuel, B. K. Gale, D. T. Carrell, and J. M. Hotaling, "Non-motile sperm cell separation using a spiral channel," Anal. Methods, vol. 7, no. 19, pp. 8041–8047, 2015. doi:10.1039/C5AY02205C
[21] S. A. Vasilescu, S. Khorsandi, L. Ding, S. R. Bazaz, R. Nosrati, D. Gook, and M. E. Warkiani, "A microfluidic approach to rapid sperm recovery from heterogeneous cell suspensions," Sci. Rep., vol. 11, no. 7917, pp. 1–11, 2021. doi:10.1038/s41598-021-87046-9.
[22] M. M. Naderi, H. Gao, J. Zhou, I. Papautsky, and Z. Peng, "Deciphering the unique inertial focusing behavior of sperm cells," Lab Chip, vol. 25, no. 12, pp. 2874–2886, 2025. doi:10.1039/D5LC00047E.
[23] A. Rahi, M. Kazemi, E. Pishbin, S. Karimi, and H. Nazarian, "Cross flow coupled with inertial focusing for separation of human sperm cells from semen and simulated TESE samples," Analyst, vol. 146, no. 23, pp. 7230–7239, 2021. doi:10.1039/D1AN01525G
[24] R. Samuel, J. Son, T. G. Jenkins, A. Jafek, H. Feng, B. K. Gale, D. T. Carrell, and J. M. Hotaling, "Microfluidic system for rapid isolation of sperm from microdissection TESE specimens," Urology, vol. 140, pp. 70–76, 2020. doi:10.1016/j.urology.2019.12.053
[25] A. Jafek, H. Feng, H. Brady, K. Petersen, M. Chaharlang, K. Aston, B. Gale, T. Jenkins, and R. Samuel, "An automated instrument for intrauterine insemination sperm preparation," Sci. Rep., vol. 10, art. 21385, 2020. doi:10.1038/s41598-020-78390-3
[26] J. Son, R. Samuel, B. K. Gale, D. T. Carrell, and J. M. Hotaling, "Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel," Biomicrofluidics, vol. 11, no. 5, art. 054106, 2017. doi:10.1063/1.4994548
[27] M. Mou, Y. Guo, F. Luo, Y. Yu, and J. Zhang, "Model predictive complex system control from observational and interventional data," Chaos, vol. 34, no. 9, art. 093125, 2024. doi:10.1063/5.0195208
[28] S. Ramya, S. Praveen Kumar, G. Dinesh Ram, and D. Lingaraja, "A short review of spiral microfluidic devices with distinct cross-sectional geometries," Microfluidics and Nanofluidics, vol. 26, art. 95, 2022. doi:10.1007/s10404-022-02593-5
[29] J. P. Beech, B. D. Ho, G. Garriss, V. Oliveira, B. Henriques‑Normark & J. O. Tegenfeldt, “Separation of pathogenic bacteria by chain length,” Anal. Chim. Acta, vol. 1000, pp. 223–231, 2018. doi:10.1016/j.aca.2017.11.050
[30] A. Sherbaz, B. M. K. Konak, P. Pezeshkpour, B. Di Ventura & B. E. Rapp, "Deterministic Lateral Displacement Microfluidic Chip for Minicell Purification," Micromachines, vol. 13, no. 3, 2022, Art. 365, doi:10.3390/mi13030365
[31] K. Matsuura & K. Takata, "Blood Cell Separation Using Polypropylene‑Based Microfluidic Devices Based on Deterministic Lateral Displacement," Micromachines, vol. 14, no. 2, Art. 238, 2023. doi:10.3390/mi14020238
[32] E. Henry, S. H. Holm, Z. Zhang, J. P. Beech, J. O. Tegenfeldt et al., "Sorting cells by their dynamical properties," *Sci. Rep.*, vol. 6, Art. 34375, pp. –, 2016. doi:10.1038/srep34375
[33] D.-H. Kuan, C.-C. Wu, W.-Y. Su, N.-T. Huang et al., "A Microfluidic Device for Simultaneous Extraction of Plasma, Red Blood Cells, and On‑Chip White Blood Cell Trapping," Sci. Rep., vol. 8, Art. 15345, 2018. doi:10.1038/s41598‑018‑33738‑8
[34] S. H. Holm, J. P. Beech, M. P. Barrett & J. O. Tegenfeldt, “Separation of parasites from human blood using deterministic lateral displacement,” Lab Chip, vol. 11, no. 7, pp. 1326–1332, 2011. doi:10.1039/C0LC00560F
[35] S. H. Holm, J. P. Beech, M. P. Barrett & J. O. Tegenfeldt, "Simplifying microfluidic separation devices towards field-detection of blood parasites," Anal. Methods, vol. 8, pp. 3291–3300, 2016. doi:10.1039/C6AY00443A
[36] J. P. Beech, S. H. Holm, K. Adolfsson & J. O. Tegenfeldt, "Sorting cells by size, shape and deformability," Lab Chip, vol. 12, pp. 1048–1051, 2012. doi:10.1039/C2LC21083E
[37] J. McGrath, M. Jimenez, and H. Bridle, "Deterministic lateral displacement for particle separation: a review," Lab Chip, vol. 14, no. 41, pp. 4139–4158, 2014. doi:10.1039/C4LC00733E
[38] K. K. Zeming et al., "Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells," Sci. Rep., vol. 6, no. 22934, 2016. doi:10.1038/srep22934