Modares Mechanical Engineering

Modares Mechanical Engineering

Investigating Transport and Deposition of Nanoparticles in Voronoi Porous Foams with Various Pore Densities using Euler–Lagrange Method with Pore-Scale Perspective

Document Type : Original Article

Authors
1 School of Mechanical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
2 School of Mechanical Engineering, Iran University of Science and Technology, Iran
10.48311/mme.2025.116918.82866
Abstract
Pore-scale simulations, by explicitly incorporating the geometrical features of the porous medium, enable accurate examination of fluid flow and particle transport within the foam. The present study numerically investigates nanoparticle transport and deposition in open-cell metallic foams with Voronoi-based geometries and a fixed porosity of 80%. Foam structures were reconstructed using the Laguerre–Voronoi algorithm, and simulations were performed with an Eulerian–Lagrangian framework implemented in the open-source software OpenFOAM. The model accounts for drag, Brownian motion, gravity, buoyancy, and Saffman lift forces, as well as van der Waals and electrostatic double-layer interactions to capture nanoparticle–wall adhesion. Results indicate that increasing the pore density from 30 to 60 pores per inch (PPI) enlarges the interfacial area while reducing flow velocity, thereby extending particle residence time and significantly enhancing deposition. Quantitatively, this increase in pore density leads to an approximate 26.5% rise in nanoparticle deposition ratio. Among the cases examined, the Voronoi foam with 80% porosity and 30 PPI exhibited the lowest deposition rate, whereas the foam with 80% porosity and 60 PPI showed the highest
Keywords

Subjects


 

[1] G. Boccardo, C. Marchisio, and F. Tosco, “A review of transport of nanoparticles in porous media: From pore-to-macroscale using computational methods,” Nanomater. Detect. Remov. Wastewater Pollut., pp. 351–381, 2020, doi: 10.1016/B978-0-12-818489-9.00015-1.
[2] S. K. Das, S. U. S. Choi, and H. E. Patel, “Heat transfer in nanofluids—A review,” Heat Transf. Eng., vol. 27, no. 10, pp. 3–19, 2006, doi: 10.1080/01457630600904593.
[3] X. Ling, Z. Yan, Y. Liu, and G. Lu, “Transport of nanoparticles in porous media and its effects on the co-existing pollutants,” Environ. Pollut., vol. 283, p. 117098, 2021, doi: 10.1016/j.envpol.2021.117098.
[4] K. Nawaz, J. Bock, and A. M. Jacobi, “Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions,” Appl. Therm. Eng., vol. 119, pp. 222–232, 2017, doi: 10.1016/j.applthermaleng.2017.03.012.
[5] N. Seetha, A. Raoof, M. M. Kumar, and S. M. Hassanizadeh, “Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale,” J. Contam. Hydrol., vol. 200, pp. 1–14, 2017, doi: 10.1016/j.jconhyd.2017.03.004.
[6] G. Gerber, D. A. Weitz, and P. Coussot, “Propagation and adsorption of nanoparticles in porous medium as traveling waves,” Phys. Rev. Res., vol. 2, no. 3, p. 033074, 2020, doi: 10.1103/PhysRevResearch.2.033074.
[7] G. Liang and I. Mudawar, “Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels,” Int. J. Heat Mass Transf., vol. 136, pp. 324–354, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.02.086.
[8] J. Fan and L. Wang, “Review of heat conduction in nanofluids,” J. Heat Transf., vol. 133, no. 4, 2011, doi: 10.1115/1.4002633.
[9] O. Mahian, A. Kianifar, S. Z. Heris, et al., “Recent advances in modeling and simulation of nanofluid flows—Part I: Fundamentals and theory,” Phys. Rep., vol. 790, pp. 1–48, 2019, doi: 10.1016/j.physrep.2018.11.004.
[10] S. Ghafouri, M. Alizadeh, S. M. Seyyedi, H. H. Afrouzi, and D. D. Ganji, “Deposition and dispersion of aerosols over triangular cylinders in a two-dimensional channel: Effect of cylinder location and arrangement,” J. Mol. Liq., vol. 206, pp. 228–238, 2015, doi: 10.1016/j.molliq.2015.02.018.
[11] A. Malvandi, M. Zamani, S. J. Hosseini, and S. A. Moshizi, “Figure of merit for optimization of nanofluid flow in circular microchannel by adapting nanoparticle migration,” Appl. Therm. Eng., vol. 118, pp. 328–338, 2017, doi: 10.1016/j.applthermaleng.2017.02.081.
[12] H. Khoshtarash, M. Siavashi, M. Ramezanpour, and M. J. Blunt, “Pore-scale analysis of two-phase nanofluid flow and heat transfer in open-cell metal foams considering Brownian motion,” Appl. Therm. Eng., vol. 221, p. 119847, 2023, doi: 10.1016/j.applthermaleng.2023.119847.
[13] E. Sepehri and M. Siavashi, “Pore-scale direct numerical simulation of fluid dynamics, conduction and convection heat transfer in open-cell Voronoi porous foams,” Int. Commun. Heat Mass Transf., vol. 137, p. 106274, 2022, doi: 10.1016/j.icheatmasstransfer.2022.106274.
[14] M. Ramezanpour, M. Siavashi, A. Q. Raeini, and M. J. Blunt, “Pore-scale simulation of nanoparticle transport and deposition in a microchannel using a Lagrangian approach,” J. Mol. Liq., vol. 355, p. 118948, 2022, doi: 10.1016/j.molliq.2022.118948.
[15] M. Ramezanpour, M. Siavashi, H. Khoshtarash, and M. J. Blunt, “Transport and deposition of nanoparticles in porous media at the pore scale using an Eulerian–Lagrangian method,” J. Taiwan Inst. Chem. Eng., vol. 161, p. 105536, 2024, doi: 10.1016/j.jtice.2024.105536.
[16] S. Andarwa, H. B. Tabrizi, and G. Ahmadi, “Effect of correcting near-wall forces on nanoparticle transport in a microchannel,” Particuology, vol. 16, pp. 84–90, 2014, doi: 10.1016/j.partic.2013.11.007.
[17] D. J. Young and R. J. Kearney, “Brownian particle deposition in a directly simulated turbulent channel flow,” Phys. Fluids, vol. 5, no. 6, pp. 1427–1437, 1993, doi: 10.1063/1.858785.
[18] R. Paknahad, M. Siavashi, and M. Hosseini, “Pore-scale fluid flow and conjugate heat transfer study in high-porosity Voronoi metal foams using multi-relaxation-time regularized lattice Boltzmann (MRT-RLB) method,” Int. Commun. Heat Mass Transf., vol. 141, p. 106607, 2023, doi: 10.1016/j.icheatmasstransfer.2023.106607.
[19] A. Li and G. Ahmadi, “Dispersion and deposition of spherical particles from point sources in a turbulent channel flow,” Aerosol Sci. Technol., vol. 16, no. 4, pp. 209–226, 1992, doi: 10.1080/02786829208959550.
[20] I. S. Akhatov, J. M. Hoey, O. F. Swenson, and D. L. Schulz, “Aerosol focusing in micro-capillaries: Theory and experiment,” J. Aerosol Sci., vol. 39, no. 8, pp. 691–709, 2008, doi: 10.1016/j.jaerosci.2008.04.004.
[21] P. G. Saffman, “The lift on a small sphere in a slow shear flow,” J. Fluid Mech., vol. 22, no. 2, pp. 385–400, 1965, doi: 10.1017/S0022112065000824.
[22] P. Huang, J. S. Guasto, and K. S. Breuer, “The effects of hindered mobility and depletion of particles in near-wall shear flows and the implications for nanovelocimetry,” J. Fluid Mech., vol. 637, pp. 241–265, 2009, doi: 10.1017/S0022112009990656.
[23] R. Hogg, T. W. Healy, and D. W. Fuerstenau, “Mutual coagulation of colloidal dispersions,” Trans. Faraday Soc., vol. 62, pp. 1638–1651, 1966, doi: 10.1039/TF9666201638